
C

eZ80® Family of Microprocessors

Zilog TCP/IP Software
Suite Programmer’s Guide
Reference Manual
RM004114-1211
opyright ©2011 Zilog Inc. All rights reserved.
www.zilog.com

http://www.zilog.com
http://www.zilog.com

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

ii
DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant
into the body, or (b) support or sustain life and whose failure to perform when properly
used in accordance with instructions for use provided in the labeling can be reasonably
expected to result in a significant injury to the user. A critical component is any
component in a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer

©2011 Zilog Inc. All rights reserved. Information in this publication concerning the
devices, applications, or technology described is intended to suggest possible uses and
may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR
PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION,
DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
D O E S N O T A S S U M E LI A B I L I T Y F O R I N T E L L EC T U A L PRO P E RT Y
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION,
DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The
information contained within this document has been verified according to the general
principles of electrical and mechanical engineering.

eZ80 and eZ80Acclaim! are registered trademarks of Zilog Inc. All other product or
service names are the property of their respective owners.

Warning:
RM004114-1211

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

iii
Revision History

Each instance in the Revision History table below reflects a change to this
document from its previous version. For more details, click the appropri-
ate links in the table.

Date
Revision
Level Description Page

Dec
2011

14 Globally updated for the ZTP v2.4.0 release. All

Aug
2010

13 Globally updated for the ZTP v2.3.0 release; modified
configwlan; added keyIndex and pass-phrase commands.

163, 165,
166

Nov
2008

12 Globally updated for the ZTP v2.2.0 release; added Config-
uring PPP, 2, scan, join, configwlan, setipparams sections.
Updated Build Options for the ZDS II Environment, Com-
mon Libraries, Figure 1, 1, User Configuration Details, 3, 4,
Configuring the SHELL, Configuring the Management
Information Base, Configuring the Simple Network Man-
agement Protocol, Connecting to a Remote Host Across a
Network, How to Use DNS, How to Use PPP, How to Use
SNMP, SNMP Objects, Adding Objects to the MIB, Using
SNMP to Manipulate Leaf Objects in the MIB, How to Add
a Table to the MIB, The SNMP_GET_FUNC Support Rou-
tine, The SNMP_SET_FUNC Support Routine, Updating
SNMP Values, 1 sections. Added Appendix B. Guidelines
to Porting SNMP and PPP Applications.

3, 4, 7,
14, 15,
16, 24,
28, 29,
31, 34,
58, 66,
69, 77,
81, 84,
87, 89,
92, 94,
98, 103,
105,160,
161,
162,163

Jul
2007

11 Globally updated for branding. All

Jul
2007

10 Globally updated for the ZTP v2.1.0 release. All
RM004114-1211 Revision History

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

iv
Jun
2007

09 Updated for style. Added User Configuration Details.
Updated SNMP Objects, How to Use SMTP, 1, 8, Config-
uring PPP, How to Use SNMP, cd, gettime, settime, sleep,
Stub Library sections. Removed ZTP Resource Usage,
Operating system Overview, Protocol Overview, and ZTP
HTTP Server Overview. Removed Build Operations for IAR
Embedded Workbench Environment, Understanding
SNMP, and Getting started with ZTP sections.

All

Jul
2006

08 Globally updated for the ZTP v2.0.0 release. All

Date
Revision
Level Description Page
RM004114-1211 Revision History

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

v

Table of Contents

Revision History . iii

Introduction . viii
About This Manual . viii
Intended Audience . viii
Manual Organization . ix
Software Release Versions . ix
Safeguards .x
Online Information .x

Product Overview .1
System Features .1
ZTP Software .2

ZTP Configuration. .5

Network-Configurable Parameters .5
Datalink Layer Configuration .5
Configuring PPP .7
User Configuration Details .14
Network Configuration .16

Build Options for the ZDS II Environment 31
Libraries .33

Using ZTP .36

How to Use HTTP .36
Initializing HTTP .36
Building Web Pages .50

How to Use TFTP .53

How to Use SMTP .54

How to Use the Telnet Server .57
RM00411401-1211 Table of Contents

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

vi
How to Use the Telnet Client .57
Connecting to a Remote Host Across a Network 58
Closing a Connection to a Remote Host 59
Sending Data to a Remote Host .60

How to Use the FTP Server .61

How to Use the FTP Client .62
Connecting to an FTP Server .62
Log In With a Username and Password 63
Issuing FTP Commands .63

How to Use BOOTP .64

How to Use DHCP .64

How to Use DNS .66

How to Use IGMP .67

How to Use TIMEP .68
Requesting the Time .68

How to Use PPP .69

How to Use the HTTPS Server .71

How to Use the Shell .74

How to Use SNMP .77
Working with SNMPv3 .101

How to Use the SNTP Client .102

ZTP Shell Command Reference .103

Appendix A. Creating ZTP Shell Commands 167
ping Command Example .167

Appendix B. Guidelines to Porting SNMP and PPP Applications169

API Changes .169

Index .172

Customer Support .179
RM00411401-1211 Table of Contents

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

viii
Introduction

This reference manual describes the architecture of the Zilog TCP/IP
(ZTP) Software Suite, which features a set of TCP/IP software libraries,
board support packages (BSPs), application protocols and a version of the
Zilog Real-Time Kernel (RZK) for Zilog’s eZ80 microprocessors and
eZ80Acclaim! microcontrollers. The ZTP libraries require minimum
memory and transform these devices into efficient embedded webservers.

This document describes the ZTP Software Suite v2.3.0 and later. If you
are using ZTP Software Suite v1.3 or a prior version, refer to the Zilog
TCP/IP Software Suite v1.3.4 Programmer’s Guide (RM0008), which is
available free for download from the Zilog website.

About This Manual

Zilog recommends that you read and understand the complete manual
before using this product to develop code. This manual describes how to
develop software using the ZTP Software Suite. For additional informa-
tion regarding the ZTP Software Suite, please refer to the Zilog TCP/IP
Stack API Reference Manual (RM0040).

Intended Audience

This document is written for Zilog customers who have exposure to
microprocessors and networking fundamentals.

Note:
RM00411401-1211 Introduction

http://www.zilog.com/docs/software/rm0008.pdf
http://www.zilog.com/docs/software/rm0008.pdf
http://www.zilog.com/docs/software/rm0040.pdf
http://www.zilog.com/docs/software/rm0040.pdf

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

ix
Manual Organization

This reference manual is organized into the following chapters and appen-
dices.

Product Overview

This chapter describes the product overview of ZTP.

ZTP Configuration

This chapter discusses the details about ZTP’s configurable parameters,
and the build options for ZDS II environment.

Using ZTP

This chapter describes how to use the various protocols available in the
ZTP Software Suite.

ZTP Shell Command Reference

This chapter describes the ZTP shell commands.

Appendix A. Creating ZTP Shell Commands

This appendix provides an example of how to create your own shell com-
mands.

Appendix B. Guidelines to Porting SNMP and PPP
Applications

This appendix describes the differences between ZTP v2.1.0 (and earlier)
and ZTP v2.2.0 and later releases.

Software Release Versions

Software release versions in this manual are represented as <version>,
which denotes the current release of the ZTP software available on
RM00411401-1211 Introduction

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

x

www.zilog.com. Version numbers are expressed as X.Y.Z, in which X is
the major release number; Y is the minor release number, and Z is the revi-
sion number.

Safeguards

It is important that you understand the following safety terms.

A procedure or file can be corrupted if you do not follow directions.

A procedure can cause injury or death if you do not follow directions.

Online Information

Visit Zilog’s eZ80 and eZ80Acclaim! web pages for:

• Product information for eZ80 and eZ80Acclaim! devices

• Downloadable documentation describing the eZ80 and eZ80Acclaim!
devices

• Source license information

Caution:

Warning:
RM00411401-1211 Introduction

http://www.zilog.com
http://zilog.com/index.php?option=com_product&task=product&businessLine=1&id=77&parent_id=77&Itemid=57
http://www.zilog.com

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

1

Product Overview

The Zilog TCP/IP (ZTP) Software Suite includes a preemptive, multitask-
ing real-time kernel, the Zilog Real-Time Kernel (RZK), which is an
operating system developed by Zilog. ZTP contains a set of libraries that
implement an embedded TCP/IP stack. In addition, ZTP also contains a
number of application protocols.

System Features

The key features of ZTP include:

• Compact, preemptive, multitasking real-time kernel with interprocess
communications (IPC) support and soft real-time attributes

• Complete TCP/IP stack

• Compatible with all members of the eZ80 family

• Implementation of the following standard network protocols:

• Interoperable with all RFC-compliant TCP/IP and Network Protocol
implementations to provide seamless connectivity

• A board support package (BSP) containing an Ethernet Media Access
Controller (EMAC) driver for the CrystalScan 8900A, the eZ80F91
integrated EMAC, and a WLAN driver for the Realtek 8711 chipset

• A serial driver

ARP DHCP DNS FTP HTTP SSL ICMP

IGMP IP PPP RARP SMTP TCP SNMP

UDP SNTP Telnet TFTP TIMEP
RM00411401-1211 Product Overview

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

2

• Final stack size is link/time-configurable and determined by the pro-
tocols included in the build

• Application demonstrations

ZTP Software

The ZTP software is comprised of two planes.

1. The first plane represents the Zilog’s RTOS, RZK; it is referred to as
the OS plane. The OS plane includes a scheduler, a memory manager,
and IPC services.

2. The second plane represents the embedded TCP/IP protocol stack; it
is referred to as the stack plane. Modules in the stack plane typically
require the services of the OS plane to ensure that they can coexist
with other applications that compete for the processor.

Figure 1 displays the architecture of the Zilog TCP/IP protocol stack,
which corresponds to the Open Systems Interconnect (OSI) model. This
figure also displays the locations in which the application can interface to
ZTP; these locations are denoted by the color teal.
RM00411401-1211 Product Overview

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

3

Many TCP/IP protocols are designed to operate on a client-server model.
Therefore, Table 1 lists the complete name of each ZTP protocol and also
indicates whether ZTP implements a client or a server for each of the
application protocols displayed in Figure 1. Protocols that implement the
Transport, Network, and Datalink layers typically operate in Peer-to-Peer
mode, requiring both a client component and a server component to allow
interoperability. These protocols are designated as Peer in Table 1.

Figure 1. Architecture of the Zilog TCP/IP Protocol Stack

Operating System

Software Stack Plane

GPIO

User Application

UART0

PPP

TCP

TELNET SMTP FTP HTTP

User App User App

User App TIMEP BOOTP

DHCP SNTP

DNS TFTP SNMP User App

UDP

PHYSICAL

DATALINK

NETWORK

TRANSPORT

APPLICATION

USER APPLICATION

ARP

IP

RARP

IGMP ICMP

HDLC PPPoE

Serial Driver

UART1

Ethernet Driver WLAN Driver

EMAC 802.11 b/g

SSL
RM00411401-1211 Product Overview

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

4

Table 1. ZTP Protocol Layers

Protocol Expansion Client, Server, or Peer

ARP Address Resolution Protocol Peer

DHCP Dynamic Host Configuration Protocol Client

DNS Domain Name Server Client

FTP File Transfer Protocol Client and Server

HTTP Hyper Text Transfer Protocol Server

ICMP Internet Control Message Protocol Peer

IGMP Internet Group Management Protocol Peer

IP Internet Protocol Peer

PPP Point-to-Point Protocol Peer

RARP Reverse Address Resolution Protocol Peer

SMTP Simple Mail Transfer Protocol Client

SNMP Simple Network Management Protocol Server

SSL Secure Socket Layer Server

TCP Transmission Control Protocol Peer

Telnet Telnet Client and Server

TFTP Trivial file Transfer Protocol Client

TIMEP Time Protocol Client

UDP User Datagram Protocol Peer

SNTP Simple Network Time Protocol Client

PPPoE Point-to-Point Protocol over Ethernet Client
RM00411401-1211 Product Overview

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

5

ZTP Configuration

ZTP is highly configurable and scalable. This chapter discusses the
details about its configurable parameters. ZTP configuration is divided
into the following three main modules:

1. RZK configuration

2. BSP configuration

3. Network configuration

For more information about RZK and BSP configurations, refer to the
Zilog Real-Time Kernel User Manual (UM0075).

Network-Configurable Parameters

This section discusses the configurable parameters of the Datalink Layer,
which includes the point-to-point protocol (PPP), the network stack, and
the shell.

Datalink Layer Configuration

Table 1 lists a number of device configurations that are used by ZTP in
the Datalink Layer. In the table, the default system values are identified
by an asterisk. To modify these default values, you must include the cor-
responding file in the project workspace and modify it according to proj-
ect requirements.
RM00411401-1211 ZTP Configuration

http://www.zilog.com/docs/software/um0075.pdf

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

6

Table 1. Datalink Layer Configurable Parameters

Component
Configuration File To Modify

Variable/Macro
To Modify Valid Configuration Values

EMAC Driver RZK\Conf\
emac_conf.c

f91_mac_addr EMAC address (default values in
hexadecimal): 0x00, 0x90, 0x23,
0x00, 0x04, 0x04

F91_emac_config
(valid only for the
eZ80F91 plat-
form)

Structure that contains the following
values for initializing the EMAC
device:

txBufSize = 0–1368*

mode = F91_10_HD; 10 Mbps Half
Duplex
mode = F91_10_FD; 10 Mbps Full
Duplex
mode = F91_100_HD; 100 Mbps
Half Duplex
mode = F91_100_FD; 100 Mbps Full
Duplex
mode = F91_AUTO; Autosense

bufSize = 0-32*

UART Driver RZK\Conf\
uart_conf.c

serparams Structure that contains the following
values for initializing the UART
device:

baud = 2400, 9600 or 19200, 38400,
57600*, or 115200

databits = 7 or 8*

stopbits = 1* or 2

parity = PAREVEN, PARODD, or
PARNONE*

Note: *Default value: for example, 1368 is default value for upper limit of txBufSize.
RM00411401-1211 Network-Configurable Parameters

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

7

Configuring PPP

The PPP_CONF.c file must be configured to enable communication over
Point-to-Point (PPP) protocol. PPP supports HDLC and PPPoE as the
lower layer interfaces. If the PPPoE macro is defined in the project work-
space, then the project will be configured for PPPoE.

UART Driver RZK\Conf\uart
_conf.c

serparams
(cont’d)

Settings can also contain combina-
tional values with logical OR (|)oper-
ation:

SERSET_DTR_ON* (UART1):
Assert data terminal ready (DTR) on
open, reset it on close.

SERSET_RTSCTS* (UART1): Use
RTS/CTS hardware flow control.

SERSET_DTRDSR: Use DTR/DSR
hardware flow control.

SERSET_XONXOFF: Use XON/
XOFF SW flow control.

SERSET_ONLCR* (UART0): Map
NL to CR-NL on output.

SERSET_SYNC* (UART0): Use
Synchronous routines instead of
interrupts.

SERSET_IGNHUP* (UART0): Ignore
Hangup (CD drop).

Table 1. Datalink Layer Configurable Parameters (Continued)

Component
Configuration File To Modify

Variable/Macro
To Modify Valid Configuration Values

Note: *Default value: for example, 1368 is default value for upper limit of txBufSize.
RM00411401-1211 Network-Configurable Parameters

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

8

Changes to PPP parameters can be made by changing a parameter in the
PPP_CONF structure in PPP_CONF.c file.

ZTP supports PPPoE only as a client.

The members of the PPP_CONF structure is explained below.

struct PppConf {
INT8 *myuser;
INT8 *mypassword;
UINT16 auth;
UINT16 MRU;
UINT16 ConfigTimer;
UINT16 MaxConfigRequest;
UINT8 ppp_mode;

};

INT8 *myuser. A pointer to a user name string that can be used for
authentication. If ZTP performs as a PPP client, then this user name is
sent to the peer for authentication and if the ZTP performs as a PPP
server, then the user name can be used to authenticate the connecting peer.

INT8 *mypassword. A pointer to a password string that can be used for
authentication. If ZTP performs as a PPP client then this is the password
that will be sent to the peer for authentication and if ZTP performs as a
PPP server, then the password can be used to authenticate the connecting
peer.

UINT16 auth. A value that specifies the authentication protocol to use. A
value of 0 means that the peer is not authenticated. A value of
ZTP_PPP_PAP requires the remote to authenticate using the PAP protocol
or a value of ZTP_PPP_CHAP requires the remote to authenticate using
CHAP protocol.

UINT16 MRU. The maximum receive unit (MRU) specifies the largest
packet size that can be received from the peer.

Note:
RM00411401-1211 Network-Configurable Parameters

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

9

UINT16 ConfigTimer. The time interval between two PPP configuration
request packets.

UINT16 MaxConfigRequest. A value that specifies the maximum num-
ber of times a configuration request packet is sent and if either unan-
swered or rejected before the connection is terminated.

UINT8 ppp_mode. Mode of operation of the PPP layer (PPP_CLIENT or
PPP_SERVER).

The members of the PppNetworkConf structure is explained below.

struct PppNetworkConf {
INT8 *myaddress;
INT8 *peeraddress;
INT8 *PrimaryDns;
INT8 *SecondaryDns;
INT8 *PrimaryNbns;
INT8 *SecondaryNbns;

};

INT8 *myaddress. A string that contains the four-octet IP address that is
used for the local end of the connection. The value 0 indicates that the
local IP is obtained by negotiation from the other end of the connection.

INT8 *peeraddress. A string that contains the four-octet IP address that
is used for the remote end of the connection. The value 0 indicates that the
remote IP is obtained by negotiation from the other end of the connection.
If a value is specified, the connection is established only if the remote end
negotiates the same address.

INT8 *PrimaryDns. A string that contains the four-octet primary DNS
server IP address that is used for the remote end of the connection. The
value 0 indicates that the DNS server IP is obtained through negotiation
from the other end of the connection. If a value is specified, then the DNS
server IP address is offered to the peer, else it is not offered.

INT8 *SecondaryDns. A string that contains the four-octet secondary
DNS server IP address that is used for the remote end of the connection. If
a value is specified, then the secondary DNS server IP address is offered
RM00411401-1211 Network-Configurable Parameters

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

10
to the peer. Otherwise, if the value is 0, then the secondary DNS server IP
address is not offered to the peer.

INT8 *PrimaryNbns. A string that contains the four-octet primary NBNS
server IP address that is used for the remote end of the connection. If a
value is specified, then the secondary DNS server IP address is offered to
the peer. Otherwise, if the value is 0, then the secondary DNS server IP
address is not offered to the peer.

INT8 *SecondaryNbns. A string that contains the four-octet secondary
NBNS server IP address that is used for the remote end of the connection.
If a value is specified, then the secondary DNS server IP address is
offered to the peer. Otherwise, if the value is 0, then the secondary DNS
server IP address is not offered to the peer.

The following are the other configuration parameters:

UINT8 g_EnablePppDebug. Setting this variable to TRUE enables the
debug prints on the console. The debug prints on the console provides the
summary of all of the LCP, PAP/CHAP, IPCP options during PPP negoti-
ations. Setting this variable to FALSE disables all of the debug prints in
PPP.

UINT8 g_PppServerAutoInitialize. When a PPP connection is termi-
nated (either by ZTP or by the peer), the ZTP PPP protocol reinitializes
and accepts new connection requests from clients, but only if the PPP
connection is configured as a server for dial-up or as a direct cable con-
nection, and its variable is set to TRUE. If the variable is set to FALSE,
then the application calls the PPP initialization routine (ztpPPPInit). If
configured as a client, then this variable is not affected.

Configuring PPP with HDLC

Structures of the type chatscript_t contain chat scripts (character
strings) that are used in exchanges between the modem and the PPP soft-
ware to perform tasks such as, answering an incoming call (PPP server) or
dialing a specific phone number (PPP client). There are four default
chatscript_t scripts in the PPP_CONF.c file that can be used as a
RM00411401-1211 Network-Configurable Parameters

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

11
starting point in creating your projects. Table 2 on page 11 lists the default
modemchat scripts.

typedef struct chatscript {
 INT8 *SendScript;
 INT8 *ReceiveScript;
 UINT16 TimeOutValue;
}chatscript_t;

INT8 *SendScript. A pointer to a string that is sent to the modem. NULL
is used if the string is not sent.

INT8 *ReceiveScript. A pointer to a string that is expected from the
modem; use NULL if no response is expected.

UINT16 TimeOutValue. The maximum number of seconds to wait for an
expected string from the external device. After sending a string, the
modem control software sets a timer and waits for the expected string. If
the expected string arrives before the time-out period, the timer is stopped
and the next modemchat in the script is executed. However, a time-out
occurs before the expected string is received, the PPP layer closes the
serial port and abandons this connection attempt. If the time-out is speci-
fied as 0, the time-out period is set to an infinite value.

Table 2. Modemchat Scripts and their Description

Modemchat
Scripts Description

DialServer The DialServer is used when the ZTP performs as a
PPP server answering incoming calls from an external
modem.

DialClient The DialClient is used when the ZTP performs as a
PPP client dialing outgoing calls using an external
modem.
RM00411401-1211 Network-Configurable Parameters

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

12
typedef struct HdlcConfig {
INT8 *SerDevName;
struct chatscript *chat;
UINT16 nchat;

}HdlcConfig_t;

INT8 *SerDevName. Name of the serial device to which the modem is
connected (SERIAL0 or SERIAL1).

struct chatscript *chat. Pointer to the chat script used (DialServer/
DialClient/DccServer/DccClient).

UINT16 nchat. Number of entries in the chat script pointed by
chatscript *chat structure.

Examples of the PPP settings for server and client appear in the code frag-
ments are provided below.

PPP Server Settings

struct PppConf PPP_CONF = {
"ez80", /* User ID */
"Zilog123", /* Password */
ZTP_PPP_PAP, /* ZTP_PPP_CHAP,ZTP_PPP_CHAP

Authentication protocol*/
1400, /* MRU */
3, /* ConfigTimer-Time intervals b/w conf

/* requests */

DccServer The DccServer is used when the ZTP performs as a
PPP server using Direct Cable Connect (DCC, NULL
modem) to a client PC with Windows.

DccClient The DccClient is used when the ZTP performs as a
PPP client using Direct Cable Connect (DCC, NULL
modem) to a server PC with Windows.

Table 2. Modemchat Scripts and their Description

Modemchat
Scripts Description
RM00411401-1211 Network-Configurable Parameters

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

13
6, /* MaxConfigRequest-Max No. of Conf
/* requests */

PPP_SERVER, /*PPP mode-PPP_SERVER or PPP_CLIENT */
};

struct PppNetworkConf PppNwConf = {
"192.168.2.1", /* My IP Address */
"192.168.2.2", /* Peer IP Address */
"192.168.2.10",/* Peer Primary DNS IP Address */
0, /* Peer Secondary DNS IP Address */
0, /* Peer Primary NBNS IP Address */
0 /* Peer Secondary NBNS IP Address */

};

PPP Client Settings

struct PppConf PPP_CONF = {
"ez80", /* User ID */
"Zilog123", /* Password */
ZTP_PPP_PAP, /* ZTP_PPP_CHAP,ZTP_PPP_CHAP

/* Authentication protocol*/
1400, /* MRU */
3, /* ConfigTimer-Time intervals b/w conf

/* requests */
6, /* MaxConfigRequest-Max No. of Conf

/* requests */
PPP_CLIENT, /*PPP mode-PPP_SERVER or PPP_CLIEN */

};
struct PppNetworkConf PppNwConf = {
0, /* My IP Address */
0, /* Peer IP Address */
0, /* Peer Primary DNS IP Address */
0, /* Peer Secondary DNS IP Address */
0, /* Peer Primary NBNS IP Address */
0 /* Peer Secondary NBNS IP Address */
};

Sample PPP HDLC Server Settings Using An External Modem

chatscript_t DialServer[] = {
RM00411401-1211 Network-Configurable Parameters

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

14
{"ATE&F&K3&S1\r","OK",30},
{NULL, "RING",0},
{"ATA\r","CONNECT",60},
};

HdlcConfig_t g_HdlcConf = {
 "SERIAL1", /* Serial port on which modem */
 DialServer,
 3

};

Configuring PPPoE

The PPPoE_conf.c file contains the following variables which can be
modified according to the requirements.

UINT8 g_PPPoE_PADI_RexmitCount. Maximum value of the retrans-
mission count for PADI and PADO request, if no response is received.

UINT32 g_PPPoE_PADI_BlockTime. Maximum value of the block time
in RZK ticks for a response from the server for PADI and PADO packets
sent.

User Configuration Details

ZTP maintains a common list of the user name and password for FTP,
SHELL, and Telnet. These details are stored in ZTPUsrDtls.txt file in
Zilog File System if it is included in the project. If the project does not
include ZFS then the user name and password are maintained as a linked
list. ZTPuserDetails.c file has supporting routines to add/delete the
user name and password pairs.
RM00411401-1211 Network-Configurable Parameters

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

15
Table 3. ZTP Initialization Routines

File Routine Description

ZTPinit_Conf.c RZK_KernelInit() Initializes the RZK Kernel and all of
the other objects used.

Init_DataPersistence() Initializes the data persistence struc-
tures and sets the values of the MAC
addresses, IP addresses, gateway
addresses, subnet mask, and DHCP
enable/disable based on the values
stored in Flash Information page.

Init_Serial0_Device() Adds the UART0 device to the RZK
device driver frame work (DDF) and
also execute the corresponding ini-
tialization routine.

Init_Serial1_Device() Adds the UART1 device to the RZK
DDF and also execute the corre-
sponding initialization routine.

Init_RTC_Device() Adds the RTC device to the RZK
DDF and also execute the corre-
sponding initialization routine.

Init_EMAC_Device() Adds the EMAC device to the RZK
driver frame work and also execute
the corresponding initialization rou-
tine.

Init_TTY_Device() Adds the TTY device to the RZK
driver frame work and also execute
the corresponding initialization rou-
tine.

nifDriverInit() Initializes network interfaces.

ZTPinit_Conf.c DHCP_Init() Initiates the DHCP processes.

CreateZTPAppThread() ZTPAppEntry() thread is created.

RZK_KernelStart() all of the threads that are created will
start running.
RM00411401-1211 Network-Configurable Parameters

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

16
Network Configuration

ZTP features a network stack configuration in which certain components
can be included – or different stack parameters can be modified – based
on system requirements. These variables and macros are located in the
following filepath:

..\ZTP\Conf\

The variables and macros for the eZ80F91, eZ80F92, eZ80F93 and
eZ80L92 devices are defined in the ZTPConfig.c configuration file; the
configuration file for the eZ80F91 Mini configuration is named
ZTPConfig_mini.c.

Table 4 lists the ZTP core configuration and the values for the variables or
macros that are a part of the configuration.

Table 4. ZTP Core Configuration

File To Modify Variable/Macro To Modify Valid Configuration Values

ZTP\Conf\
ZTPConfig.c

MAX_IP_RX_BUFFH Maximum number of IP receiver buf-
fer size. Default value: 16.

MAX_TCP_CONNECTIONS Maximum number of TCP connec-
tions allowed at a specific point of
time. Default value: 24.

MAX_RX_BUFSIZE Maximum TCP internal receiver buf-
fer size. Default value: 4096.

MAX_TX_BUFSIZE Maximum TCP internal transmit buf-
fer size. Default value: 4096.

MAX_UDP_CONNECTIONS Maximum number of UDP connec-
tions allowed at a specific point of
time. Default value: 6.
RM00411401-1211 Network-Configurable Parameters

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

17
ZTP\Conf\
ZTPConfig.c
(cont’d.)

MAX_NO_ETH_IF Maximum number of Ethernet inter-
faces present in the system. Default
value: 1.

MAX_NO_SERIAL_IF Maximum number of serial interfaces
present in the system. Default value:
1.

DEFAULT_IF Index into ifTbl for the default inter-
face. Default value: 0.

DEFAULT_IF_TYPE Default interface type. Default value:
ETH. Valid values: ETH or PPP.

MAX_NUM_USERS Maximum number of users for FTP,
Telnet and the shell. Default value: 3.

IGMP_MAX_NO_GRP Maximum number of IGMP groups.
Default value: 10.

REAS_MAXBUFS Maximum number of IP reassembly
buffers. Default value: 3.

REAS_MAXBUF_SIZE Maximum size of each IP reassem-
bly buffer. Default value: 4507.

NUMBER_OF_TTY_DEVIC
ES

Number of TTY devices (Telnet and
the shell).

Reboot_if_diff_IP Reboots the system if DHCP pro-
vides a different IP address during
the renewal of the IP address.
Default value: FALSE. Valid value:
TRUE or FALSE.

b_use_dhcp Using DHCP to get the IP address
for the system at startup. Default
value: TRUE. Valid values: TRUE or
FALSE.

Table 4. ZTP Core Configuration (Continued)

File To Modify Variable/Macro To Modify Valid Configuration Values
RM00411401-1211 Network-Configurable Parameters

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

18
ZTP\Conf\
ZTPConfig.c (cont’d)

eZ80_name Name of the system. Default value:
TRUE.

httppath Directory in which the HTTP server
searches for the requested web
pages in this directory. Default value:
“/”.

g_DefaultSearchFS If TRUE, the HTTP server searches
for requested web pages in Zilog File
System. If not found, the HTTP
server searches in the static web
page array and vice-versa. Default
value: FALSE. Valid values: TRUE or
FALSE.

ztpEnPPPAtBoot Start PPP during system bootup.
Default value: FALSE. Valid values:
TRUE or FALSE.

g_ShellPrompt The g_ShellPrompt variable is used
to change the ZTP shell prompt. If
Zilog File System is enabled, the fol-
lowing prompt name is concate-
nated with Zilog File System volume
name and displayed in the console.
Default value: ZTP.

Example: When Zilog File System is
enabled and the current volume
name is ZTP EXTF:/, the prompt is:
[ZTP EXTF:/]>.

If Zilog File System is not enabled,
the prompt is displayed as:
[g_ShellPrompt]> If the prompt name
is ZTP, the display is: [ZTP]>.

Table 4. ZTP Core Configuration (Continued)

File To Modify Variable/Macro To Modify Valid Configuration Values
RM00411401-1211 Network-Configurable Parameters

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

19
ZTP\Conf\
ZTPConfig.c (cont’d)

g_TelnetPrompt The g_TelnetPrompt variable is used
to change the ZTP Telnet server’s
prompt. Default value: “eZ80 Telnet”.

ztpDhcpRtrs Max number of DHCP retries.
Default value: 3.

ztpForwardIP IP Forwarding. Default value: 0.
Valid values:
0: Disable IP forwarding;
1: Enable IP forwarding.

ztpTftpTimeout UDP receive time-out for TFTP.
Default value: 5 (in seconds).

g_ztpsntpTimeout UDP receive time-out for SNTP.
Default value: 5 (in seconds).

ztpRarpMaxResend Max number of RARP retries.
Default value: 3.

ztpTcpMaxRtrs Max TCP transmission retires before
getting disconnected.
Default value: 10.

g_ShellLoginReqd Enable user login and password
facility. Default login/password: anon-
ymous.

ztpDnsTimeout UDP receive time-out for DNS.
Default value: 5 seconds.

g_console_dev_to_use DEV_SERIAL0 indicates the device
to print the messages.
Valid values: DEV_SERIAL0 for
UART0, DEV_SERIAL1 for UART1.

Table 4. ZTP Core Configuration (Continued)

File To Modify Variable/Macro To Modify Valid Configuration Values
RM00411401-1211 Network-Configurable Parameters

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

20
ZTP\Conf\
ZTPConfig.c (cont’d)

defaultUsrName The defaultUsrName variable is used
as the user name to log in to the ZTP
shell, Telnet server, and FTP server.
If Zilog File System is enabled/used,
the user name and password are
stored in a file. If Zilog File System is
not enabled/used, the user name
and password are stored in a static
array. You can add a new user name
and password apart from the default
user name and password using the
addusr command. For more informa-
tion about the addusr command, see
the ZTP Shell Command Reference
section on page 103. Default value:
anonymous.

password Password used to log in to the ZTP
shell, Telnet server, and FTP server.
Default value: anonymous.

g_FTPCmdPort Port Number for the FTP Control
connection. This is applicable for
both FTP client and server.

g_FTPDataPort Port Number for the FTP Data Con-
nection. This is applicable for FTP
server.

g_TELNETDPri Indicates the priority of the Telnet
server thread. Default value is 10.

g_TELNETDShellPri Indicates the priority of the Telnet
server thread which is created for
each client connected. Default value
is 15.

Table 4. ZTP Core Configuration (Continued)

File To Modify Variable/Macro To Modify Valid Configuration Values
RM00411401-1211 Network-Configurable Parameters

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

21
ZTP\Conf\
ZTPConfig.c (cont’d)

g_FTPDPri Indicates the priority of the FTP
server thread. Default value is 10.

g_HTTPDPri Indicates the priority of the HTTP
server thread. Default value is 10.

g_PPPDPri Indicates the priority of the PPP
thread. Default value is 7.

g_SYSIPDPri Indicates the priority of the system
thread, i.e., IP. Default value is 28.

g_BOOTPDPri Indicates the priority of the BOOTP
thread. Default value is 8.

g_BOOTPDTimPri Indicates the priority of the BOOTP
Timer thread. Default value is 10.

g_SHELLDPri Indicates the priority of the shell
thread. Default value is 15.

g_SNMPDPri Indicates the priority of the SNMP
Agent thread. Default value is 20.

g_AppEntryTaskPrio Indicates the priority of the Applica-
tion thread, ZTPAppEntry() present
in main.c. Default value is 16.

Table 4. ZTP Core Configuration (Continued)

File To Modify Variable/Macro To Modify Valid Configuration Values
RM00411401-1211 Network-Configurable Parameters

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

22
Common Servers

Table 5 lists the default settings for commonly-used servers. If DHCP is
enabled, these settings are not effective. If DHCP is disabled, these set-
tings must be configured in accordance with the local network settings.

Table 5. Common Servers

File To Modify
Variable/Macro
To Modify IP Address

ZTP\Conf\ZTPConfig.c csTbl csTbl timeserver: Time server.

csTbl NetworkTimeServer: Network Time
server.

csTbl rfserver: RF server.

csTbl tftpserver: TFTP server.

csTbl dnsserver: DNS server.
RM00411401-1211 Network-Configurable Parameters

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

23
Network Interfaces

Table 6 lists the default network interface settings. If DHCP is enabled,
these settings are not effective. If DHCP is disabled, these settings must
be configured in accordance with local network settings.

Table 6. Network Interfaces

File To Modify

Variable/
Macro To
Modify Valid Configuration Values

ZTP\Conf\ZTPConfig.c ifTbl ifTbl pNetDev: Handle to Network device
driver for this interface.

ifTbl ifType: Interface type.
Valid values: ETH or PPP.

ifTbl mtu: Maximum transfer unit. Default
value: 1480.

ifTbl speed: Interface speed at which the
interface must operate.
Valid values for:
Ethernet interfaces: ETH_100 or ETH_1.
PPP interface: PPP_9K, PPP_56K, or
PPP_115K.

myipDefault: IP address of this system in
dotted decimal notation.

ifTbldefaultroute: Default gateway IP
address of this system in dotted decimal
notation.

ifTblsubnetmask: Subnet mask(UINT32
value).
RM00411401-1211 Network-Configurable Parameters

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

24
Configuring the SHELL

ZTP features a simple shell that contains commands for displaying differ-
ent system characteristics, including commands for the kernel, the stack,
the Zilog File System and other system components. By default, all of
these commands are included in the system. If any particular shell com-
mand is to be excluded from the application, then the respective com-
mand must be commented in the shell_conf.c file. Table 7 lists these
shell commands.

The shell_conf.c file contains a set of nonnetwork-related commands.
These commands are made available by default; therefore, you are not
required to call a shell_add_commands() statement to make them
available. However, you can add new commands to the struct cmdent
defaultcmds[] structure file, the contents of which are listed below.

struct cmdent defaultcmds[] = {
#ifndef EVB_F91_MINI
 {"bpool",
TRUE,(SHELL_CMD)x_bpool,NULL,g_ShellHelpStrings[0]},
 {"devs", TRUE, (SHELL_CMD)x_devs, NULL,
g_ShellHelpStrings[1]},
 {"echo", TRUE, (SHELL_CMD)x_echo, NULL,
g_ShellHelpStrings[2]},
 {"exit", TRUE, (SHELL_CMD)x_exit, NULL,
g_ShellHelpStrings[3]},

Table 7. Shell Commands

File To Modify
Commands That Can Be Commented To Reduce
Footprint

ZTP\Conf\shell_conf.c bpool, devs, echo, exit, hang, help, kill, mem, port, sem,
sleep, gettime, settime, reboot, ps.

Zilog File System commands cd, copy, create, cwd, del, deltree, deldir, dir, format, get-
time, help, md, move, ren, rendir, settime, type, vol.
RM00411401-1211 Network-Configurable Parameters

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

25
 {"hang", TRUE, (SHELL_CMD)x_hang, NULL,
g_ShellHelpStrings[4]},
 {"help", TRUE, (SHELL_CMD)x_help, NULL,
g_ShellHelpStrings[5]},
 {"kill", TRUE, (SHELL_CMD)x_kill, NULL,
g_ShellHelpStrings[6]},
 {"mem", TRUE, (SHELL_CMD)x_mem, NULL,
g_ShellHelpStrings[7]},
 {"port", TRUE, (SHELL_CMD)x_port, NULL,
g_ShellHelpStrings[8]},
{"sem", TRUE, (SHELL_CMD)x_sem, NULL,
g_ShellHelpStrings[9] },
{"sleep", TRUE, (SHELL_CMD)x_sleep, NULL,
g_ShellHelpStrings[10]},
{"gettime", TRUE, (SHELL_CMD)x_getdatetime,NULL,
g_ShellHelpStrings[11]},

{"settime", TRUE, (SHELL_CMD)x_setdatetime,NULL,
g_ShellHelpStrings[12]},

#endif
 {"reboot",TRUE,(SHELL_CMD)x_reboot,NULL,g_ShellHelpSt
rings[13]},
{"ps", TRUE, (SHELL_CMD)x_ps, NULL,
g_ShellHelpStrings[14]},
 {"?", TRUE, (SHELL_CMD)x_help, NULL,
g_ShellHelpStrings[15]},
 }; /* shell commands */

/**
 * @doc The number of entries in the defaultcmds[]
 * array. If the defaultcmds array is modified,
 * ndefaultcmds must be adjusted accordingly.
 */
UINT16 ndefaultcmds=sizeof(defaultcmds)/sizeof(struct
cmdent);
/*@}*/
RM00411401-1211 Network-Configurable Parameters

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

26
The struct_cmdent_defaultcmds[] structure also contains the
g_ShellHelpStrings variable, which contains the help strings pro-
vided by the shell.

If you require shell command help, you can define a macro called
HELP_REQUIRED in shell_conf.c file. By default, help strings are
disabled.

INT8 *g_ShellHelpStrings[] = {
"Displays information about system’s buffer pools.\n",
"Prints device information in the device table.\n",
"Echos text entered after the echo command to the std
out.\n",
"Suspends the shell.\n",
"Displays the set of commands that can be executed
from the shell’s command prompt. When help is followed
by a command name it prints help for that specific
command.\n",
"Kills a specified process.\n",
"Prints a summary of the state of system memory.\n",
"Formats and prints information about all message
ports currently in use.\n",
"Displays information about all active semaphores.\n",
"Places the shell process to sleep for a specified
number of seconds.\n",
"Prints the current date and time to a standard
output.\n",
"Sets the current date and time to a standard
output.\n",
"Causes the operating system to begin its
initialization sequence.\n",
"Displays information about all processes in the
system.\n",
"Same as Help.\n",
}

The struct_cmdent_defaultcmds[] structure also contains the
g_ftpClientHelpStrings variable, which contains the help strings
provided by the FTP client.
RM00411401-1211 Network-Configurable Parameters

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

27
During the FTP session, you can obtain command functionality assistance
by entering the help FTP <CMD> command in the console. Within the
syntax of this command, <CMD> represents the command in question. The
FTP help command responds by displaying the appropriate help string.

If you do not require FTP command help, a variable named
g_ftpClientHelpStrings can be set to NULL to reduce system over-
head. For more information about FTP commands, see the ftp section on
page 123.

CHAR *g_ftpClientHelpStrings[] = {
"set ascii transfer type",
"set binary transfer type",
"terminate ftp session and exit",
"change remote working directory",
"terminate ftp session",
"delete remote file",
"list contents of remote directory",
"receive file",
"toggle printing `#' for each buffer transferred",
"print local help information",
"change working directory on local machine",
"list contents of remote directory",
"list contents of remote directory",
"make directory on remote machine",
"mode",
"list contents of remote directory",
"connect to remote ftp",
"send one file",
"print working directory on remote machine",
"terminate ftp session and exit",
"receive file",
"remove directory on remote machine",
"remove file on remote machine",
"rename the file on remote machine",
"show remote system type",
"send new user information"
};
RM00411401-1211 Network-Configurable Parameters

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

28
Sample Usage

The following command displays the help string for the mkdir command.

[ZTP EXTF:/]> ftp
ftp> help mkdir
make directory on remote machine

Configuring Text Telephony

The tty_conf.c file contains the number of available Text Telephony
(TTY) devices. The shell can be used via any device over which a TTY
driver is layered. Similarly, the Telnet server layers a TTY device over the
TCP connection that is created to service the Telnet session and allow
another instance of the shell to execute. The tty structure is listed in the
following code fragment.

struct tty ttytab[4];

/*
 * @doc The number of TTY devices is contained in Ntty.
 * This variable should be treated as Read-Only, and
 * its declaration in tty_conf.c should not be
 * changed.*
 */

/* Don't modify this declaration of Ntty */
UINT8 Ntty = sizeof(ttytab)/sizeof(struct tty);

Configuring the Management Information Base

The snmib.c file contains the management information base (MIB),
which is controlled by the SNMP Agent. The MIB is implemented as an
array of SNMPMIBData structures (refer to the snmpMib.h file in the inc
directory). There is an entry in the g_snmpMIBInfo [] array for each
leaf object in the MIB. A leaf object contains no direct descendants. There
are also entries in the g_snmpMIBInfo [] array for tables of objects.
Each g_snmpMIBInfo[] table entry contains the object identifier that
RM00411401-1211 Network-Configurable Parameters

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

29
uniquely identifies the object within the MIB, the data type of the object,
a pointer to the value of the object, and a flag that indicates if the object
can be modified by the SNMP Set primitive.

You can add this file to a project and modify the g_snmpMIBInfo [] as
appropriate for the application. For every table that is added to the
g_snmpMIBInfo [], a corresponding entry is added to the sn_table[]
array located in the snmib.c file. This secondary table contains informa-
tion required by the SNMP library to properly manipulate objects within a
table. In particular, each entry in the sn_table[] array contains the
address of a user-supplied routine to implement the SNMP functions Get
and Set for all objects within the table. In addition, sn_table[] entries
contain the address of a user-supplied function to find the Next object
within the table that is accorded an arbitrary input object identifier.
Finally, the sn_table[] entry describes the number of fields (i.e., col-
umns) within the table and the number of subidentifiers comprising the
table index. For more information about updating the SNMP
g_snmpMIBInfo [] and sn_table[] arrays, see the How to Use
SNMP section on page 77.

Configuring the Simple Network Management Protocol

The snmp_conf.c file contains user-modifiable objects within the sys-
tem group of the MIB and general SNMP configuration values. Objects
within the system group that can be tailored to your application include:

g_sysObjectID. This object identifier uniquely identifies this product
within your organization’s enterprise code.

g_sysDescr. This displayable text string describes your product.

g_sysContact. This displayable string contains the email address of the
contact person in your organization responsible for managing this device.

g_sysName. This displayable string contains the assigned name of this
device. Typically, this name is the fully qualified domain name of the
device, such as blackbox238.company.com.
RM00411401-1211 Network-Configurable Parameters

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

30
g_sysLocation. This displayable string identifies the physical location of
the device.

g_sysServices. This 7-bit quantity identifies the set of service layers
offered by the device.

In addition to these objects from the SNMP system group, the
snmp_conf.c file contains the following variables, which can be tai-
lored for your application:

UINT16 g_snmpMaxObjectSize. This variable represents the number of
bytes of the largest SNMP object value that the application must process.
For example, if you define an object within the MIB that is a 2000-byte-
long octet string, the value of g_snmpMaxObjectSize should be set to
2000. To ensure proper operation of the SNMP library routines, this value
must always be at least as large as sizeof(struct oid).

INT8 g_snmpTrapTargetIP[]/g_snmpTrapTargetPort. This string of
characters identifies the name of the device to which all SNMP trap mes-
sages are sent; the name can be specified as a domain name or as an IP
address. By default, SNMP trap messages are sent to UDP port 162 on the
target device but can be configured by changing the
g_snmpTrapTargetPort variable.

g_snmpMaxStrSize. This variable indicates the maximum number of
bytes that a display string object type variable can contain.

g_snmpEnterpriseOid. This variable is used in the cases of SNMPV2
and SNMPV3, in which the enterprise-specific trap OID must be speci-
fied.

g_snmpEnterpriseOIDLen. You must set the length of the enterprise-
specific trap OID in this variable.

The Authentication failure trap generation is controlled by the value of
SnmpEnableAuthenTraps variable. You can modify this variable in
your application or it can be modified via an SNMP Set operation. By
default, SNMP Authentication Traps are not generated.

Note:
RM00411401-1211 Network-Configurable Parameters

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

31
The application can request the generation of an enterprise-specific trap
by using the snmpGenerateTrap API. To send an enterprise-specific
trap in SNMPV2 and SNMPV3, the enterprise-specific trap OID must be
set in the g_snmpEnterpriseOid variable located in the snmp_conf.c
file.

Build Options for the ZDS II Environment

This section discusses the options available for building ZTP in the
ZDS II environment. To configure ZTP, you must modify the build config-
uration within ZDS II. This configuration includes the linking of different
libraries and a modification of the project settings. A number of protocols
can be omitted from ZTP by including the stub library instead of the pro-
tocol library, or by commenting out the protocol initialization.

Some of the features of the ZTP core are also made optional. Therefore,
these features can be disabled by including the appropriate.obj file.

The following features are identified in ZTP to reduce the footprint:

IP Reassembly. If this feature is disabled, the IP layer will not perform
any reassembly, and any fragmented packets will be discarded.

IP Routing. If this feature is disabled, the packet which is not destined to
ZTP, is not forwarded, but discarded.

Optional ICMP Messages. If this feature is disabled, all of the ICMP
messages received are discarded except the ICMP Echo message.

Table 8 lists the procedure to remove/omit a protocol from ZTP.
RM00411401-1211 Build Options for the ZDS II Environment

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

32
Table 8. Remove a Protocol or Feature in the ZDS II Environment

Protocol/Feature
to be Removed/
Omitted Procedure

Telnet server Comment out the telnet_init() command in the main.c file.

Telnet client Comment out the telnet command in the shell_conf.c file.

SNMP 1. Comment out the snmp_init() command in the main.c file.

2. Select Project Settings.
3. Select the General category in the Linker tab of the Project Set-

tings dialog box.
4. Enter the nosnmp.obj object file in the Object/Library Modules

text field.

SMTP Comment out the mail command in the shell_conf.c file.

DHCP 1. Select Project Settings.

2. Select the General category in the Linker tab of the Project
Settings dialog box.

DNS 1. Select Project Settings.

2. Select the General category in the Linker tab of the Project
Settings dialog box.

FTP client Comment out the ftp command in the shell_conf.c file.

FTP server Comment out the ftdinit() command in the main.c file.

HTTP Comment out the http_init() function call in the main.c file.

IGMP Comment out the hginit() function call in the main.c file.

TFTP Comment out the tftp_get and tftp_put commands from the
shell_conf.c file.

TIMED Comment out the time_rqest() command in the main.c file.

RARP 1. Select Project Settings.

2. Select the General category in the Linker tab of the Project
Settings dialog box.

3. Enter the norarp.obj object file in the Object/Library Modules
text field.
RM00411401-1211 Build Options for the ZDS II Environment

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

33
Libraries

This section lists the names of the libraries and the corresponding comple-
mentary .obj stub that must be included in a library project to remove
the component.

ZTP Libraries

The ZTP TCP/IP core library, ZTPCore.lib, is located in the following
path:

<install directory>\ZTP\lib\ZTPCore.lib

IP reassembly
feature

To disable this feature,

1. Select Project Settings.

2. Select the General category in the Linker tab of the Project Set-
tings dialog box.

3. Enter the noreassembly.obj object file in the Object/Library Mod-
ules text field.

IP routing 1. Select Project Settings.

2. Select the General category in the Linker tab of the Project
Settings dialog box.

3. Enter the noroutepacket.obj object file in the Object/Library
Modules text field.

Optional ICMP
features

1. Select Project Settings.

2. Select the General category in the Linker tab of the Project Set-
tings dialog box.

3. Enter the noicmpoptionals.obj object file in the Object/
Library Modules text field.

Table 8. Remove a Protocol or Feature in the ZDS II Environment (Continued)

Protocol/Feature
to be Removed/
Omitted Procedure
RM00411401-1211 Build Options for the ZDS II Environment

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

34
Common Libraries

The ZTP common library, CommonProtoLib.lib, contains the follow-
ing application protocols:

Apart from the common protocols listed above, the
commonProtoLib_SNMPV3.lib library, which is part of the SSL pack-
age, contains SNMPV3 code.

Stub Library

Stub and shadow libraries must be included in a project if a particular
component is not required to be included for the footprint. The following
stub libraries are included:

PPP DHCP DNS SMTP

SNMP TFTP client FTP server FTP client

TIMED Telnet client Telnet server HTTP server

IGMP RARP SNTP PPPoEClient

NoRarp.obj Stub for RARP.

NoSnmp.obj Stub for SNMP.

NoPpp.obj Stub for PPP.

NoChap.obj Stub for PPP CHAP.

Noroutepacket.obj Stub to disable ZTP’s routing feature.

Norassembly.obj Stub to disable ZTP’s IP reassembly feature.

Noicmpoptionals.obj Stub to discard the received ICMP error mes-
sages other than an ICMP echo message.
RM00411401-1211 Build Options for the ZDS II Environment

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

35
The shell and TTY components do not feature stubs. Therefore, if you are
required to remove these components, no relevant function calls must be a
part of the application code. Because the Telnet protocol is highly depen-
dent on the shell and TTY components, this protocol cannot be used with-
out shell and TTY support.

Website Libraries

The Acclaim_Website.lib and Mini_Website.lib library files
contain sample website libraries that must be included in your applica-
tion. There are also the AuthAcclaim_Website.lib and
AuthMini_Website.lib libraries, which contain sample website
libraries for HTTP digest authentication schemes.

Note:
RM00411401-1211 Build Options for the ZDS II Environment

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

36
Using ZTP

This chapter describes how to use the protocols in the Zilog TCP/IP Soft-
ware Suite.

How to Use HTTP

Using ZTP’s HTTP user interface primarily involves writing the applica-
tion code that calls an HTTP initialization function. It also involves build-
ing web pages into your webserver using ZDS II.

Initializing HTTP

To configure ZTP as a webserver to provide web pages with Digest-MD5
authentication to any web client (browser) connected to a network, a call
must be made to the httpDigestAuth_init function. The following
code fragment shows the syntax of this httpDigestAuth_init func-
tion.

INT16 httpDigestAuth_init (const Http_Method*
http_defmethods, const struct header_rec *
httpdefheaders, webpage *website, UINT16 portnum);

The httpDigestAuth_init function initializes and runs the webserver.
When called, httpDigestAuth_init sets the default webserver pro-
cesses within the webserver and connects to the TCP/IP stack to allow
communication over the web. After the setup of these webserver processes
is complete and the webserver is running, httpDigestAuth_init either
returns a SYSERR if the function fails, or returns the TCP port number if
the function is successful.
RM00411401-1211 Using ZTP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

37
A number of sample projects are included with ZTP. For an example of
how to use the httpDigestAuth_init function, refer to the main.c
file in these sample projects.

To configure the a webserver to provide web pages with authentication to
any web client (browser) connected to a network, a call must be made to
the httpBasicAuth_init, which initializes the HTTP function with
Basic authentication. The following code fragment shows the syntax of
this httpBasicAuth_init function.

INT16 httpBasicAuth_init (const Http_Method*
http_defmethods, const struct header_rec *
httpdefheaders, webpage*website, UNIT16 portnum);

The httpAuth_init function initializes and runs the webserver. When
called, httpAuth_init sets the default webserver processes with
authentication.The function returns a SYSERR if the function fails, or
returns the TCP port number if the function is successful.

A description of the httpDigestAuth_init function parameters are
provided in the following sections.

In an eZ80 webserver, only one HTTP webserver can be initialized, with
the http_init() function, the httpDigestAuth_init() function, or
the httpBasicAuth_init() function.

Defining the HTTP Method

The first parameter of the http_init function is http_defmethods,
which is externally defined as an array of http_method structures. The
definition of the http_method structure is found in the http.h include
file, and is shown as follows:

typedef struct http_method {
 INT key;
 INT8 *name;

Note:
RM00411401-1211 How to Use HTTP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

38
 void (*method)(Http_Request *);
}Http_Method;

Each element in the http_defmethods array maps one of the methods
supported by the http_method structure to the requested function that
implements the method member of http_method. The name structure
member is a string that identifies the method. Collectively, the elements
of the http_defmethods array identify the set of HTTP methods (com-
mands) to which the webserver responds.

ZTP’s HTTP server implements the following methods:

These methods can be overridden, or extended, by replacing the
http_defmethods array with a user-defined array of http_method
structures.

The following code fragment lists a number of default HTTP methods.

const Http_Method http_defmethods[] =
{
 {HTTP_GET,"GET",http_get},
 {HTTP_HEAD,"HEAD",http_get},
 {HTTP_POST,"POST",http_post},
 {HTTP_SUBSCRIBE,"SUBSCRIBE",http_post},
 {HTTP_UNSUBSCRIBE,"UNSUBSCRIBE",http_post},
 {0, NULL, NULL},
};

For example, you can replace the http_get function with http_myget
function by changing the HTTP_GET entry as follows:

HTTP_GET, “GET”, http_myget

POST SUBSCRIBE

GET UNSUBSCRIBE

HEAD
RM00411401-1211 How to Use HTTP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

39
http_myget must use a prototype similar to the prototype for
http_get, as follows:

http_get(Http_Request *request)

The ZTP http_post function can also be replaced by a user-defined
function in a similar way. Both of these functions use the request
pointer, which is of the http_request structure type. Alternatively, you
can choose a custom method by adding an entry to http_defmethods.
For example, the custom request NEW can be declared as follows:

HTTP_NEW, “NEW”, http_new

The resulting http_new custom function, as well as HTTP_NEW, must
also be declared in the http.h file.

Defining the HTTP Header

The second parameter of the http_init function is
http_defheaders, which is externally defined by the webserver soft-
ware and contains the default table of recognized headers. If the header
from the client request is recognized from this list, it is passed to the
HTTP method.

Similar to the http_defmethods parameter, the http_defheaders
parameter can accept new entries. The http_defheaders parameter is a
structure of type header_rec, and is defined in the following code frag-
ment.

struct header_rec
{
 INT8 *name;
 UINT16 val;
};

const struct header_rec httpdefheaders[] = {
{“Accept”, HTTP_HDR_ACCEPT},

 {“Cache-Control”, HTTP_HDR_CACHE_CONTROL},
 {“Callback”, HTTP_HDR_CALLBACK},
 {“Connection”, HTTP_HDR_CONNECTION},
RM00411401-1211 How to Use HTTP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

40
 {“Content-Length”, HTTP_HDR_CONTENT_LENGTH},
 {“Content-Type”, HTTP_HDR_CONTENT_TYPE},
 {“Transfer-Encoding”, HTTP_HDR_TRANSFER_ENCODING},
 {“Date”, HTTP_HDR_DATE},
 {“Location”, HTTP_HDR_LOCATION},
 {“Host”, HTTP_HDR_HOST},
 {“Server”, HTTP_HDR_SERVER},

{“Authorization”,HTTP_HDR_SEND_CLIENT_AUTH},
{“WWW-Authenticate”,HTTP_HDR_ASK_CLIENT_AUTH},
{“Authentication-Info”,HTTP_HDR_SEND_SERVER_AUTH},

 {NULL, 0},
};

Defining HTTP Web Pages

The third parameter of the http_init function is website, which must
be defined. This parameter defines the web pages to be included in the
website. Because these web pages created by the webserver are accessed
by the webserver software as embedded data elements (and not from a
mass storage device such as a disk drive), the web pages are built into the
webserver code using ZDS II.

The website parameter is an array of web page structures, and is defined
in the http.h header file. There must be an element in this array for each
web page in the website. The following code fragment lists the contents
of the http.h header file.

struct webpage {
 UINT8 type; /* Whether this is a static*/

/* HTTP_PAGE_STATIC) or dynamic*/
/*(HTTP_PAGE_DYNAMIC)*/
/* page. */

 INT8 *path; /*The relative path to this page*/
 INT8 mimetype; /*The mime type to be returned */

/* in the MIMETYPE header.*/

 union { /*Either a structure defining*/
 const struct staticpage spage; /* static page */
RM00411401-1211 How to Use HTTP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

41
 INT (*cgi)(void *);/*or a 'cgi' function that */
 } content; /* generates this page */
};

As the above definition reveals, the webpage structure contains four
fields: type, a pointer to path, mimetype, and a pointer to either a page
of type staticpage or to the cgi function. These four fields are
described below.

The type parameter. The first parameter that defines a web page is the
type parameter, which must be of type http_page_static or
HTTP_PAGE_DYNAMIC, indicating whether the page is a static web page
or a dynamic web page.

The path parameter. The second parameter path is a pointer to a char-
acter string containing the relative path (including filename) to the web
page. Because the file structure for web pages in ZTP is flat, the path
parameter is simply used by ZTP as a character string to match the path
(character string) from a browser URL to a pointer for a web page, CGI
function, image, applet, etc. The pointer is the fourth parameter in the
webpage structure.

The mimetype parameter. The third parameter, mimetype, is a pointer
to a character string that defines the mime type of the web page. Exam-
ples of mime types managed by a webserver are:

• text/html

• application/octet-stream

• image/gif

• image/jpg

The Fourth Parameter. The fourth parameter is dependent upon the defi-
nition of the first website parameter, type. This fourth parameter pro-
vides a definition for either static or dynamic web pages.
RM00411401-1211 How to Use HTTP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

42
Static Web Pages. If the type parameter is defined to be a static web
page (i.e., HTTP_PAGE_STATIC), then the fourth parameter must be a
pointer to a staticpage structure, which is defined in http.h and
shown below.

struct staticpage
{
 UINT8 *contents;
 UINT16 size;
};

When web pages are built into the code using ZDS II, each web page is
provided a reference to a parameter declared with a staticpage struc-
ture. The name of this parameter is derived from the name of the web
page file, as follows:

filename.htm filename_htm

You must therefore include these external declarations in the application
code by using the filename_htm naming convention. For more informa-
tion about this naming convention, see the Building Web Pages section on
page 50.

As an example, demo_htm is defined in the final line of the demo_htm.c
file. This file is located in the following path:

..\ZTP<version>\website

The following code fragment lists the contents of the demo_htm.c file.

const struct staticpage demo_htm =
{(UINT8 *)demo_htm_data, sizeof(demo_htm_data)};

The filename_html structure of the web page name must be used when
editing or referencing the filename.htm static page. The following
code fragment provides an example of this structure.

// HTML pages
extern struct staticpage demo_htm;
extern struct staticpage htmlpost_htm;
extern struct staticpage htmlget_htm;
RM00411401-1211 How to Use HTTP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

43
extern struct staticpage javaapplet_htm;
extern struct staticpage javascript_htm;
extern struct staticpage products_htm;
extern struct staticpage siteinfo_htm;

The parameter names in the above code correspond to the staticpage
parameter names for static pages in the website array.

The static pages in the website array can be normal static web pages or
static web pages containing links to applets. If there is a link to an applet,
the website must also contain the applet function. All applet functions are
downloaded to the browser with the static page containing the applet links.

The applet functions in the website array example provided above con-
tain the class extension in the path and filename, and are of the applica-
tion/octet-stream mimetype.

Applet functions can be created by writing java classes in .java files.
These .java files are built using a Java IDS, such as Sun’s JDK, to gen-
erate .class files. The output .class files are then placed into the web-
site directory before a ZDS II build. When beginning a ZDS II build,
ZDS II transforms these .class files into .c files that are then built with
other source files to create a downloadable output file for the webserver.
For additional information, see the Building Web Pages section on page
50.

Dynamic Web Pages. If the type parameter is defined as a dynamic
web page (HTTP_PAGE_DYNAMIC), then the fourth parameter must be a
pointer to a common gateway interface (CGI) function. This CGI function
must observe the following structure.

INT function_name(struct http_request *request)

For example, the website array shows an entry in the dynamic web page
definition with a reference to a function named add_cgi. In the website

Note:
RM00411401-1211 How to Use HTTP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

44
directory, this function is found in the add_cgi.c file. When a request
from a client web browser asks for the ../cgi-bin/add directory, and
this request is for a dynamic web page, the webserver invokes the
add_cgi function.

ZTP provides functions that support the writing of CGI code. These func-
tions return responses to the client browser and are described in the the
CGI Functions section on page 46.

The code fragment that follows provides an example of both static and
dynamic web page entries for the website array. The final entry in this
array must always be a NULL entry.

webpage website[] = {
/* 3 different ways of specifying the default web page
*/
{HTTP_PAGE_DYNAMIC, "/","text/html", (struct
staticpage*)index_cgi },
{HTTP_PAGE_DYNAMIC, "/default.htm", "text/html",
(struct staticpage*)index_cgi},
{HTTP_PAGE_DYNAMIC, "/index.htm", "text/html", (struct
staticpage*)index_cgi},

/* Specifying a dynamic web page added by the user */

{HTTP_PAGE_DYNAMIC, "/cgi-bin/add", "text/html",
(struct staticpage*)add_cgi},
{HTTP_PAGE_STATIC, "/messagerA.class", "application/
octet-stream",
&messagerA_class},
{HTTP_PAGE_STATIC, "/JavaClock.class", "application/
octet-stream",
&JavaClock_class},
{HTTP_PAGE_STATIC, "/AnalogClock.class", "application/
octet-stream",
&AnalogClock_class},
{HTTP_PAGE_STATIC, "/CustomParser.class", "application/
octet-stream",
&CustomParser_class},
RM00411401-1211 How to Use HTTP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

45
{HTTP_PAGE_STATIC, "/ParamParser.class", "application/
octet-stream",
&ParamParser_class},
{HTTP_PAGE_STATIC, "/demo.htm", "text/html", &demo_htm
},
{HTTP_PAGE_STATIC, "/htmlpost.htm", "text/html",
&htmlpost_htm},
{HTTP_PAGE_STATIC, "/htmlget.htm", "text/html",
&htmlget_htm},
{HTTP_PAGE_STATIC, "/javaapplet.htm", "text/html",
&javaapplet_htm},
{HTTP_PAGE_STATIC, "/javascript.htm", "text/html",
&javascript_htm},
{HTTP_PAGE_STATIC, "/products.htm", "text/html",
&products_htm},
{HTTP_PAGE_STATIC, "/siteinfo.htm", "text/html",
&siteinfo_htm},
{HTTP_PAGE_STATIC, "/webcam.htm", "text/html",
&webcam_htm},
{HTTP_PAGE_STATIC, "/zoffices.htm", "text/html",
&zoffices_htm},
{HTTP_PAGE_STATIC, "/aqua_bar1.gif", "image/gif",
&aqua_bar1_gif},
{HTTP_PAGE_STATIC, "/ez80banner.jpg", "image/jpg",
&ez80banner_jpg},
{HTTP_PAGE_STATIC, "/ez80chip.jpg", "image/jpg",
&ez80chip_jpg},
{HTTP_PAGE_STATIC, "/ez80logo.gif", "image/gif",
&ez80logo_gif},
{HTTP_PAGE_STATIC, "/pioneer_banner.jpg", "image/jpg",
&pioneer_banner_jpg},
{HTTP_PAGE_STATIC, "/metro.gif", "image/jpg",
&metro_gif},
{HTTP_PAGE_STATIC, "/zilog.jpg", "image/jpg",
&zilog_jpg},
{HTTP_PAGE_DYNAMIC, "/cgi-bin/ml_reflector","text/
plain", (struct staticpage*){reflect_cgi}},
{HTTP_PAGE_DYNAMIC, "/cgi-bin/ml_replacer","text/
plain", (struct staticpage*){replace_cgi}},
{0, NULL, NULL, NULL}
};
RM00411401-1211 How to Use HTTP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

46
The port Parameter. Static and dynamic web pages call the port param-
eter, which is essentially a number that is used to differentiate applica-
tions, or instances of the same application, when using the TCP/IP stack
protocol. For HTTP applications, Port 80 is used.

CGI Functions

CGI functions are invoked when the HTTP application in ZTP matches
the path parameter in the array of webpage structures to a pointer of the
CGI function. The request pointer of the http_request structure is
passed to each CGI function for this client request. The http_request
structure contains parameters from the client request. This structure is
defined in the following code fragment from the http.h header file.

typedef struct http_request {
UINT8 method;
UINT16 reply;
UINT8 numheaders;
UINT8 numparams;
UINT8 numrespheaders;
INT16 fd;
const struct http_method * methods;
const struct webpage * website;
const struct header_rec * headers;
INT8 * bufstart; /* first free space */

UINT8 extraheader;
Http_Hdr rqstheaders[HTTP_MAX_HEADERS];
Http_Hdr respheaders[HTTP_MAX_HEADERS];
Http_Params params[HTTP_MAX_PARAMS];
Http_Auth *AuthParams;/*Used only in HTTP

CRAM-MD5 Authentication*/
INT8 buffer[HTTP_REQUEST_BUF];
INT8 keepalive;
} Http_Request;

The http_request structure includes two other structures, http_hdr
and http_params, as shown in the following segment from the http.h
header file.
RM00411401-1211 How to Use HTTP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

47
typedef struct http_hdr {
 UINT8 key;
 INT8* value;
} Http_Hdr;
/**
* A key/value pair of strings.
* @name http_params
* @type typedef struct http_params
*/
struct http_params {
 UINT8* key; /** The key, typically an http

/* header. */
 INT8* value; /** The value associated with that

/* key. */
};

ZTP provides the following CGI functions:

• http_output_reply

• http_find_argument

• _http_write

• http_add_header

• http_output_headers

In each CGI function, the pointer to the request structure is used to
maintain separate requests from different clients. These five HTTP func-
tions are described below.

The http_output_reply function is used to return an acknowledge-
ment to the browser that made the request. This function is structured as
follows:

INT16 http_output_reply
(Http_Request *request, UINT16 reply);
RM00411401-1211 How to Use HTTP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

48
The http_output_reply function returns a reply that is defined in the
reply parameter to the browser that sent the request. The reply param-
eter returns an appropriate reply code from a set of reply codes that is pro-
vided in httpd.h header file, as the following code listing shows:

HTTP_200_OK
HTTP_400_BAD_REQUEST
HTTP_401_AUTHORISATION_REQUIRED
HTTP_403_FORBIDDEN
HTTP_404_NOT_FOUND
HTTP_411_LENGTH_REQUIRED
HTTP_412_PRECONDITION_FAILED
HTTP_414_REQUEST_URI_TOO_LONG
HTTP_500_INTERNAL_ERROR
HTTP_501_NOT_IMPLEMENTED
HTTP_503_SERVICE_UNAVAILABLE

The structure of the CGI function http_find_argument is:

INT8 *http_find_argument
(Http_Request *request, UINT8 *arg);

The above CGI function receives data from the corresponding browser.
This function is used to extract parameters from the received data in the
parsed browser request. In the above function, the request parameter is
the pointer to the request structure containing the parsed request from the
browser. In the http_find_argument function the arg parameter is a
character string that is used to identify the parameter to be extracted from
the request structure. This function returns a character string containing
the value of the extracted parameter.

The structure of the _http_write, CGI function is:

INT _http_write
(Http_Request *request, INT8 *buff, INT count);

The _http_write is a macro used to return data to the browser that sent
the request that invoked the CGI function.
RM00411401-1211 How to Use HTTP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

49
In the _http_write macro, the buff parameter is a pointer to a buffer
that stores the character string that is to be sent to the browser. The count
parameter is the length of this character string. This macro is defined in
the httpd.h header file.

The http_add_header and http_output_headers functions can
be used in CGI functions to dynamically add headers that function as
responses to browser requests. The structure of the CGI function
http_add_header is:

void http_add_header
(Http_Request *request, UINT16 header, INT8 *value)

The http_add_header function is used to add a header to the
http_request structure that prompts a response. The header parame-
ter is the header type that must be added, and the value parameter is a
character string containing the value of the header. The default header
types recognized by ZTP are provided in the httpd.h header file, and are
listed in the following code fragment.

HTTP_HDR_ACCEPT
HTTP_HDR_CACHE_CONTROL
HTTP_HDR_CONNECTION
HTTP_HDR_CONTENT_LENGTH
HTTP_HDR_CONTENT_TYPE
HTTP_HDR_TRANSFER_ENCODING
HTTP_HDR_DATE
HTTP_HDR_LOCATION
HTTP_HDR_HOST
HTTP_HDR_SERVER
HTTP_HDR_ASK_CLIENT_AUTH
HTTP_HDR_SEND_CLIENT_AUTH
HTTP_HDR_SEND_SERVER_AUTH

The structure of the CGI function http_output_header is:

void http_output_headers (Http_Request *request)
RM00411401-1211 How to Use HTTP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

50
The http_output_headers function is used to output a text represen-
tation of all of the httpdefheaders contained in the respheaders
array. The corresponding value of respheader from the http_request
structure is pointed to by the request parameter.

Example. Assume that the CGI routine calls the following function:

add_header(request, HTTP_HDR_LOCATION, “Jupiter”);

Next, assume that this routine calls the subsequent function:

output_headers(request)

As a result of these calls, the following text is added to the HTTP
response:

Location: Jupiter\r\n

Building Web Pages

In ZDS II, the Project Viewer contains the directories of all source files,
dependencies, and web files in the project. The web files are added to the
web files directory. When one of the webserver demonstration project
files, such as website.ZDSProj File, is opened, the web files direc-
tory can appear empty (as seen in the Project Viewer). If the web files
directory is empty, it is because the most recent build removed the files
from this directory after building its contents and placed them into a
library file called Acclaim_Website.lib. This library can be seen in
the source files directory of the Project Viewer.

To include web page files in the project, or to change the set of web pages
in the project, the current Acclaim_Website.lib file must first be
removed from the project.

To remove the current Acclaim_Website.lib file, observe the follow-
ing procedure:

1. In the Project Viewer, select the Acclaim_Website.lib file, then
select Project → Remove From Project.
RM00411401-1211 How to Use HTTP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

51
2. Add web page files to the project by choosing Project → Add to
Project file from the ZDS II menu bar. When the Add files into Proj-
ect dialog box appears, navigate to the directory containing the web
pages (in the demonstration example, it is the website directory).
For files of Type, choose Web file.

3. Select the web file to add from the Web file list, and click Add (or
click Add All to add all of the .htm files in the directory). The
selected file(s) in the web files directory are added to the web files
directory in the Project Viewer.

Not all web files in the website directory can be .htm. All files linked to a
web page, including java applets and CGI functions, are to be placed in the
website directory. Table 1 lists these filename extensions.

After a project is built, the resulting downloaded executable file contains
web pages that are appropriate to the project. As discussed previously, the
files in the web files directory are removed during the build, and a new
website.lib file appears in the source files directory. This library
includes structures of the type staticpage for each web page, and these
structures are identified with a name that is derived from the name of each
web file.

Table 1. Web Page Filename Extensions

web pages .htm

.html

cgi functions .c

applet classes .class

image files .jpg

.gif

Note:
RM00411401-1211 How to Use HTTP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

52
HTTP is interfaced with the Zilog File System. As a result, web pages can
be uploaded to the eZ80 CPU at run time using either TFTP or FTP. All
web files to be uploaded to the directory must be specified by the follow-
ing statement in the ZTPConfig.c file:

INT8 httppath[] = "/"

HTTP first searches for the requested web page in the static website
array. If it does not find the page in the static array, it searches in the
directory specified by the INT8 httppath[] variable.

For web files that are added to the Zilog File System, the Content type
field in the HTTP reply is populated based upon the file extension used. A
standard mapping of a file extension to its content type is maintained in a
structure that is defined in the website.c file, which is located in the
following path:

\ZTP\SamplePrograms\website

The website.c file is listed in the following code fragment, which also
includes a definition for the mimetypes[] structure.

struct mimetype
{
 /* file extensions */
 INT8 * fileExtns;
 /* Associated mime types for the file extensions */
 INT8 * type;
};

struct mimetype mimetypes[] =
{
 {".htm","text/html"},
 {".html","text/html"},
 {".jpg","image/jpg"},
 {".class","application/octet-stream"},
 {".gif","image/gif"},
// If the file extensions does not match any then
// unknown will be used.
// This should always be at the end.
RM00411401-1211 How to Use HTTP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

53
 {"unknown","unknown"}
};

The final entry in the website.c file should always be
{"unknown","unknown"}. The structure of this file can be updated
with additional file extensions and their MIME types. If this structure is
updated, then the website library must be rebuilt to reflect the updated
elements.

The default page displayed by the website.c file contains a link,
Flashfile, which links to the flashfile.htm HTML file. This
flashfile.htm file is present in the website directory, but is not part
of the Acclaim_Website.lib library file. The flashfile.htm file
must be uploaded to the default HTTP path set by INT8 httppath[]
using either FTP or TFTP. flashfile.htm links to the zilog.jpg
graphic element, which is present in the website directory. This
zilog.jpg file must also be uploaded to the default HTTP path.

How to Use TFTP

To transfer files to and from another host using the Trivial File Transfer
Protocol (TFTP), ZTP provides two TFTP functions:

1. tftp_put

2. tftp_get

The tftp_get function is used to download a file from a TFTP server,
and the tftp_put function is used to upload a file to a TFTP server. Each
function establishes a separate UDP connection for the file transfer.

Note:
RM00411401-1211 How to Use TFTP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

54
The prototype of the tftp_get function is:

INT32 tftp_get(INT8 *Addr, INT8 *filename)

In this prototype, Addr is a pointer to a character string containing the
name or IP address (in decimal/dotted notation) of the TFTP server, and
filename is the name of the file to be downloaded. The format of the
filename is server OS-dependent. Upon failure, the tftp_get function
returns 0 (zero); otherwise, tftp_get returns the number of bytes that
are loaded into the Zilog File System.

File that are downloaded from the server using tftp_get are stored in
the thread’s current working directory (CWD). If a file exists in the CWD
that contains the same name as the file that is downloaded from the server,
the original file is overwritten by the new file.

The prototype of the tftp_put function is:

INT32 tftp_put(INT8 *Addr, INT8 *filename)

In this prototype, Addr is a pointer to a character string containing the IP
address (in decimal/dotted notation) of the TFTP server, and filename is
the name of the file to be uploaded. This file should be present in the
thread’s CWD. The tftp_put function returns the number of bytes sent
when successful, and 0 (zero) upon failure.

How to Use SMTP

ZTP provides a mail function to send email messages using the Simple
Mail Transfer Protocol (SMTP). This mail function sends an SMTP mail
message to a specified SMTP server/port; the SMTP function then estab-
lishes a TCP connection for the mail transfer. ZTP has the option of
enabling the CRAM-MD5 algorithm authentication for SMTP. To enable
the CRAM-MD5 algorithm authentication, add the smtp_conf.c file to
the ZTP project.
RM00411401-1211 How to Use SMTP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

55
The prototype of the mail function is:

extern INT16 mail
(
INT8 *Addr, UINT16 port, INT8 *subject, INT8 *to,
INT8 *from,INT8 *usrname, INT8 *passwd, INT8 *data,
INT8 **error, UINT16 errorlen
);

In this prototype, the following elements can be defined:

• Addr is a pointer to a character string containing the name or IP
address (in decimal/dotted notation) of the SMTP server.

• port is the SMTP port to use; this port is normally set to 25.

• The subject parameter is a character string containing the Subject:
text in the mail message.

• The to and from parameters are character strings containing the
email addresses of the recipient and sender, respectively.

• The usrname and passwd parameters are the user name and pass-
word for the SMTP server to authenticate the client. These parameters
are used only if SMTP digest scheme authentication is enabled. If
SMTP digest scheme authentication is not enabled, these two parame-
ters are ignored (it is advisable to set this parameter to NULL if an
SMTP digest scheme authentication is not enabled).

• The data parameter is also a character string containing the body of
the email, plus any additional headers. The data buffer should contain
a mime-content type header. An example of this type of header is pro-
vided here:

MIME-Version: 1.0\r\nContent-Type: TEXT/PLAIN;
charset=US-ASCII\r\n\r\n

• The error parameter is a pointer to a buffer-pointer in which ZTP
can place a text string describing the reason why the mail function
RM00411401-1211 How to Use SMTP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

56
failed to send the message. You are responsible for allocating and
freeing this buffer.

• The errorlen parameter is the maximum size (in bytes) of the buf-
fer that is referenced by the error parameter.

The mail function automatically prepends the Date:, Subject:, From:,
and To: lines in the body of the message.

This function returns OK when successful, and SYSERR upon failure.

An example of the mail function is shown below:

status = mail
(
"SmtpServer.mycompany.com", // Destination SMTP server
25, // Port number
"re Thermostat Control", // Subject
"JohnDoe@mycompany.com", // Recipient email address
"eZ80EvalBoard@zilog.com", // Sender's email address
"username", // User name for server to

//authenticate
"password", // Password for server to

//authenticate email body
"MIME-Version: 1.0\r\nContent-Type: TEXT/PLAIN;" \
"charset=US-ASCII\r\n\r\n" \
"My sensors indicate the temperature in Office 506" \
"is 20 degrees above normal room temperature.",

&p_buffer, // Buffer to contain any
// returned error msgs

500 // length of Buffer
);

The mail function in ZTP works with either of the Ethernet or PPP net-
work interfaces.
RM00411401-1211 How to Use SMTP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

57
An SMTP server is required. Either the domain name or the IP address of
the server must be specified. Email addresses with domain names or IP
addresses can also be used for the sender’s and recipient’s email address.

How to Use the Telnet Server

The Telnet protocol is used to initiate a remote login session. To initialize
a Telnet server on the eZ80 CPU, you must call telnet_init(), which
creates a thread for each client. The Telnet server transfers control to the
shell, which executes all of the commands entered by the remote client.

To use the Telnet server and to obtain a Telnet prompt, you must enter the
login name and password. The default values for the login name and the
password are provided in the ZTPConfig.c file. Refer to the ZTPCon-
fig.c file to review the values that are set for the defaultUsrName and
password variables. This file is located in the following path:

..\ZTP\Conf\ZTPConfig.c

Comment out the line containing the telnet_init() statement if a Tel-
net server is not required.

How to Use the Telnet Client

ZTP provides a set of functions for remote login across a network using
the Telnet protocol. The following three functions allow users to open and
close a Telnet session with a remote host as well as send data to this
remote host over the Telnet connection.

Note:

Note:
RM00411401-1211 How to Use the Telnet Server

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

58
• TelnetOpenConnection

• TelnetCloseConnection

• TelnetSendData

Each of these Telnet functions are described in this section.

Connecting to a Remote Host Across a Network

To open a Telnet session with a server, ZTP provides the TelnetOpen-
Connection function, which establishes a TCP connection with a speci-
fied server and sends the ECHO and SUPPRESS GO AHEAD options. A
prototype of the TelnetOpenConnection function is shown below.

TELNET_RET TelnetOpenConnection(IP_ADDRESS ipAddr,
TELNET_HANDLE *telnetAppHandle, TELNETREAD telnetRead-
Callback)

In this prototype, the following elements can be defined:

• ipAddr is the IP address or name of the Telnet server.

• telnetAppHandle is a handle furnished by the Telnet client to the
application after successfully establishing a connection.

• telnetReadCallback is a function pointer furnished by the appli-
cation that is used by the Telnet client to notify the application as to
when the data is received from the remote system.

The TelnetOpenConnection function returns the TELNET_SUCCESS
value if the connection is established successfully, and returns any one of
the following values if the connection fails.
RM00411401-1211 How to Use the Telnet Client

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

59
Comment out the line containing the telnet_init() statement if a Tel-
net server is not required.

Closing a Connection to a Remote Host

To terminate a session with a Telnet server, ZTP provides the
TelnetCloseConnection function. This function terminates the TCP
connection with the specified server and clears the connection-related
information for the specific application. A prototype of the
TelnetCloseConnection function is provided below.

TELNET_RET TelnetCloseConnection(TELNET_HANDLE
telnetAppHandle)

In this prototype, telnetAppHandle is a handle furnished by the Telnet
client after successfully establishing a connection.

The TelnetCloseConnection function returns TELNET_SUCCESS
after a connection has been successfully established, and returns any one
of the following values if the connection fails.

TELNET_ALREADY_CONNECTED Indicates that a Telnet connection
already exists.

TELNET_INVALID_ARG Indicates that one or more argu-
ments are invalid.

TELNET_LOWER_LAYER_FAILURE Indicates that a TCP connection
failure occurred.

TELNET_CONNECT_FAILURE Indicates that an unknown error
occurred.

Note:
RM00411401-1211 How to Use the Telnet Client

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

60
Sending Data to a Remote Host

To send data to a Telnet server (executing server-end commands), ZTP
provides the TelnetSendData function. This function sends each
entered character to the server; each character is then displayed on the
console when the server echoes the character. A prototype of the Telne-
tSendData function is provided below.

TELNET_RET TelnetSendData (TELNET_HANDLE telnetAp-
pHandle, TELNET_DATA *telnetData, TELNET_DATA_SIZE
telnetDataSize)

In this prototype, the following elements can be defined:

• telnetAppHandle is a handle furnished by the Telnet client to the
application after successfully establishing a connection

• telnetData is the actual data that must be sent to the server

• telnetDataSize represents the amount of data to be sent

The TelnetSendData function returns a TELNET_SUCCESS value if the
connection is established successfully, and returns any one of the follow-
ing values if the connection fails.

TELNET_NO_CONNECTION Indicates that a Telnet connection is not
yet established.

TELNET_INVALID_ARG Indicates that one or more arguments are
invalid.

TELNET_FAILURE Indicates that an unknown error occurred.

TELNET_NO_CONNECTION Indicates that a Telnet connection
is not yet established.

TELNET_INVALID_ARG Indicates that one or more
arguments are invalid.
RM00411401-1211 How to Use the Telnet Client

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

61
How to Use the FTP Server

FTP is the user interface to the internet-standard File Transfer Protocol.
The program allows you to transfer files to and from a remote network
site.

To begin using ZTP’s FTP service, call the ftpdinit() function from
the application entry point, which is the main function. This function call
initializes and sets the FTP server into a listening mode.

To use the FTP server, enter a login name and password. The default val-
ues for the login name and the password are provided in the ZTPCon-
fig.c file. Refer to the ZTPConfig.c file to review the values that are
set for the defaultUsrName and password variables. This file is
located in the following path:

..\ZTP\Conf\ZTPConfig.c

You can add a new FTP user name and password using the addusr shell
command and delete an existing FTP user name and password using the
deleteusr shell command.

ZTP’s FTP server listens at the standard FTP port 21, and supports the
standard set of commands, which are listed in Table 2.

TELNET_LOWER_LAYER_FAILURE Indicates failure at the lower
layers of the stack.

Table 2. Standard Set of Commands Supported by the FTP Server

ls dir mkdir rmdir chdir

put get delete pwd system

user password bin ascii bye
RM00411401-1211 How to Use the FTP Server

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

62
The prototype for the FTP daemon entry point is:

void ftpdinit (void)

How to Use the FTP Client

To log in to a remote site and conduct a file transfer using the File Trans-
fer Protocol, ZTP provides the following set of functions, which are each
described in this section.

• ftp_connect

• do_programatic_login

• do_a_ftp_command

Connecting to an FTP Server

Use the ftp_connect function to connect to an appropriate FTP server
running on FTP_PORT. The prototype of the ftp_connect function is
shown below.

INT ftp_connect(INT8 * server_name, INT server_port,
RZK_DEVICE_CB_t *stdout);

In this prototype, the following elements can be defined:

• server_name is the IP address of the FTP server (in dotted notation)

• server_port is the port number of the FTP server

• stdout represents the console

This function returns a 0 if a connection has been established successfully,
and returns a negative value if the connection fails.
RM00411401-1211 How to Use the FTP Client

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

63
Log In With a Username and Password

To log in to an FTP server with a username and a password, use the fol-
lowing function:

do_programatic_login

A prototype of the do_programatic_login function is shown below.

INT do_programatic_login(RZK_DEVICE_CB_t *stdin,
RZK_DEVICE_CB_t *stdout, INT8 *username, INT8
*passwd);

In this prototype, the following elements can be defined:

• stdin represents a console

• stdout represents a console

• username is the username

• passwd is the password

The do_programatic_login function returns a 1 if a connection has
been successfully established, and returns 0 if the connection fails.

Issuing FTP Commands

FTP commands can be provided as arguments to the
do_a_ftp_command function. These command names must be provided
as an array of strings.

A prototype of the do_a_ftp_command function is provided below.

INT16 do_a_ftp_command(RZK_DEVICE_CB_t *device, UINT16
nargs,INT8* args[]);

In this prototype, the following elements can be defined:

• device represents a console
RM00411401-1211 How to Use the FTP Client

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

64
• nargs is the number of arguments that the command expects

• args represents the arguments that support the command

The do_a_ftp_command function returns a 0 if a connection has been
established successfully, and returns a negative value if the connection
fails.

How to Use BOOTP

BOOTP is used to carry DHCP extensions that allow ZTP to obtain
dynamic IP parameters from a DHCP server. If the network only contains
a BOOTP server, then the only IP parameter that is configured is the IP
address. For more information about using DHCP, see the How to Use
DHCP section on page 64.

When BOOTP receives IP address information, it updates the IP addresses
in the interface table.

How to Use DHCP

Zilog’s TCP/IP protocol stack can be configured to use statically-assigned
IP parameters, or to obtain these parameters dynamically from a DHCP
server. The default IP parameters are contained in the ifTbl and csTbl
structures that are contained in the ZTPConfig.c file, which is located in
the following path:

..\ZTP\Conf\ZTPConfig.c

DHCP usage is controlled by the value of the b_use_dhcp flag in the
ZTPConfig.c file. When this flag is set to TRUE, ZTP uses DHCP to

Note:
RM00411401-1211 How to Use BOOTP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

65
attempt to update the default IP parameters specified in the ifTbl and
csTbl structures during system initialization. If a server cannot be found,
ZTP uses the default values contained in the ifTbl and csTbl structures.
When b_use_dhcp is set to FALSE, ZTP uses the values in the ifTbl
and csTbl structures to determine its IP parameters.

When ZTP attempts to access a DHCP server, it starts a timer. If this timer
times out, it either repeats the attempt or defaults to the static IP address.
ZTP attempts to access the DHCP server a certain number of times, the
frequency of which are specified by the #define DHCP_RETRIES
parameter in the ZTPConfig.c file. The number of retries should be set
according to the amount of congestion that is expected on the network.

There is also a UINT8 Reboot_if_diff_IP parameter in the ZTPCon-
fig.c file. If IP parameters are obtained from the DHCP server, this IP
address lease time parameter specifies that the assigned IP address is valid
for a set amount of time. After a lapse of this lease time, the IP address
must be renewed. During this renewal, if the IP address is different from
the one initially obtained, then there are two options, which are listed
below.

• The stack must be rebooted, because any applications running are still
using the old IP address

• DHCP must inform any applications running that the IP address has
changed

The second option is currently not implemented. With the first option, if
the UINT8 Reboot_if_diff_IP configuration parameter in the ZTP-
Config.c file is set to TRUE, then, under the conditions explained above,
the stack is rebooted. If set to FALSE, a warning message is printed on the
console.

The INT8 eZ80_name[] parameter in the ZTPConfig.c file is used to
fill the host name option (option code 12) in the DHCP packets. The max-
imum size of the host name is 64 bytes.
RM00411401-1211 How to Use DHCP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

66
How to Use DNS

To resolve a host name to an IP address using DNS, ZTP provides the fol-
lowing function:

UINT32 name2ip(INT8 *name);

In this function, name is a character string containing the host name or
URL.

The name2ip function is defined in the network.h header file. This
function accesses DNS directly using a DNS-formatted message in a UDP
datagram with the DNS IP address acquired from the boot record. When
name2ip receives the IP address from DNS, it is returned as an UINT32
variable. If the name cannot be resolved, name2ip returns SYSERR. This
error occurs in the following ways:

• The name server’s IP address is unknown

• The NSame server is down

• The webserver is not attached to the network

• The gateway is down

• The user enters the name incorrectly

Therefore, if you resolve www.zilog.com into its associated IP address,
66.238.115.245, the following code is added to the project:

UINT32 zilog_ip_address;
zilog_ip_address = name2ip("www.zilog.com");

You must verify that the returned address is not SYSERR.
RM00411401-1211 How to Use DNS

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

67
How to Use IGMP

IGMP is initialized at startup by the following function:

INT16 hginit(UINT8 iface)

In this function, iface is the ethernet interface number.

Two functions are available that enable or disable specified group IP
addresses at which the webserver responds. These functions are:

INT hgjoin(UINT8 ifnum, UINT32 ipa, UINT8 ttl)
INT16 hgleave(UINT8 ifnum, UINT32 ipa)

In these functions, ifnum is the interface index, which should always be
set to the number of the primary Ethernet interface.

The ipa parameter is the multicast IP address to be added or removed
from the host. It is of type UINT32. Each webserver host can provide as
many multicast IP addresses as is specified in the following parameter:

#define IGMP_MAX_NO_GRP

This define parameter can be found in the ZTPConfig.c file. To add
more multicast IP addresses, call hgjoin for each multicast address. To
remove multicast IP addresses, call hgleave with the IP address speci-
fied in ipa.

Only multicast addresses in the range 224.0.0.2 to 239.255.255.255
must be used. Broadcast IP addresses cannot be used with this protocol.

The ttl parameter is the time to live value, which is a routing parameter
used to restrict the number of gateways/multicast routers through which
the multicast packet can pass.

Multicasting with a webserver on the network is limited to the local net-
work if a multicast router is not present on the local network.

Note:
RM00411401-1211 How to Use IGMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

68
When multicasting is set up between hosts on a network, an application
using UDP on a webserver host with ZTP must check the received mes-
sages from the UDP link to determine if the content is correct for a partic-
ular IP address, because other groups can be using the same multicast
address.

All IP multicast addresses are Class D IPv4 addresses (i.e., the first four
bits are 1110). In dotted decimal notation, the range is 224.0.0.0 to
239.255.255.255. Address 224.0.0.1 is reserved for the IGMP pro-
tocol. Address 224.0.0.2 is reserved for the multicast routers group. In
general, addresses in the range 224.0.0.0 to 224.0.0.255 are
reserved for routing protocols. IP multicast addresses are used only as
destination addresses.

All IP multicast addresses map into the lower half of the following Ether-
net address block:

01 00 5E xx xx xx

Therefore, only the last 23 bits of the 32-bit IP multicast address are
mapped to an Ethernet multicast address. For example, both of the
224.0.10.10 and 230.128.10.10 addresses use the Ethernet multi-
cast address 01 00 5E 00 0A 0A.

How to Use TIMEP

The TIMEP protocol implemented in ZTP is compliant with RFC 738.

Requesting the Time

The time_rqest() function requests the current time from a TIMEP
server. The default IP address for the TIMEP server is specified in the
csTbl structure that is contained in the ZTPConfig.c file, which is
located in the following path:
RM00411401-1211 How to Use TIMEP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

69
..\ZTP\Conf\ZTPConfig.c

When the time is received from the server, the time of day is updated in
the eZ80 CPU’s real-time clock.

How to Use PPP

The Point-to-Point Protocol (PPP) is designed primarily to provide a
mechanism for connecting to a TCP/IP network via a serial line (HDLC)
or an Ethernet link (PPPoE). ZTP provides PPP as a second network
interface with a separate IP address. PPP HDLC supports both a client
and a server, but PPPoE support is only client-based.

The following two demo commands are included by the void ztpAddP-
PPShellCmds(void) function call.

pppstart. Initializes and starts the PPP interface.

pppstop. Terminates the PPP connection.

The following two APIs are provided to start and terminate a PPP connec-
tion:

INT16 ztpPPPInit(void). This function initializes and starts the PPP inter-
face.

INT16 ztpPPPStop(void). This function terminates the PPP connection.

After a connection is established, the negotiated network parameters are
stored in a global variable named PppStatus of type PppGlobal. A def-
inition of this PppGlobal structure is shown below.

struct PppGlobal {
PppPhase Phase;
UINT32 MyIP;
UINT32 PeerIP;
UINT32 PppPriDns;
RM00411401-1211 How to Use PPP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

70
UINT32 PppSecDns;
UINT32 PppPriNbns;
UINT32 PppSecNbns;
struct netif *PppNif;
struct If *PppIf;
UINT16 IsPPPInitialized;

};

Table 3 describes each member of the PppGlobal structure.

Table 3. PppGlobal Structure Members

Member Name Description

Phase Indicates the current state of the PPP link. See Table 4 for a
description of each identifier in the PppPhase enumeration.

MyIP IP addresses of the local PPP interface after successful PPP
connection.

PeerIP IP addresses of the remote PPP interface after successful PPP
connection.

PppPriDns Primary DNS server IP address for the PPP interface.

PppSecDns Secondary DNS server IP address for the PPP interface.

PppPriNbns Primary NBNS server IP address for the PPP interface.

PppSecNbns Secondary NBNS server IP address for the PPP interface.

PppNif Pointer to the struct netif of PPP interface.

PppIf Pointer to the struct If of PPP interface.

IsPPPInitialized Flag which indicates if PPP is initialized.
RM00411401-1211 How to Use PPP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

71
Table 4 describes the PppPhase identifiers.

How to Use the HTTPS Server

The SSL.lib file contains an HTTPS server that can be used to serve
encrypted web pages to client browsers. The server is initialized by call-
ing the https_init API. This API accepts the same number and type of
parameters as the standard HTTP server API. For example, to initialize
the standard nonsecure HTTP server in ZTP, the following command is
used:

http_init(http_defmethods,httpdefheaders,website,80);

To initialize the secure HTTPS server, the following command is used:

Table 4. PppPhase Identifiers

Identifier Name Description

PPP_DEAD_PHASE Indicates the dead phase, i.e., the default phase
before ztpPPPInit() has been called.

PPP_LINK_PHASE The lower layer (modem initialization in case of PPP
HDLC and completion of Discovery process in case
of PPPoE) has been successfully. LCP negotiations
will start.

PPP_AUTHENTICATE_PHASE If authentication has been enabled in this phase, then
the user credentials are verified (PAC or CHAP).

PPP_IPCP_PHASE IPCP negotiations begins in this phase.

PPP_NETWORK_PHASE After all of the IPCP options are successfully negoti-
ated PPP will be in this phase. This phase indicates
successful PPP negotiations and that the PPP inter-
face is up.

PPP_TERMINATE_PHASE PPP is set to this phase if it receives a LCP terminate
request from the peer or if ztpPPPStop() has been
called by the application.
RM00411401-1211 How to Use the HTTPS Server

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

72
https_init(http_defmethods,httpdefheaders,web-
site,443);

It is possible to have both the secure and nonsecure webservers running at
the same time; however, these two webservers must operate through dif-
ferent ports. The port number typically used for nonsecure HTTP servers
is port 80; for secure HTTP servers (HTTP over SSL or HTTPS), the port
number typically used is port 443.

A more thorough review of HTTP servers can provide a foundation. To
understand more about HTTPS server functionality, see the How to Use
HTTP section on page 36.

Limitations of the HTTPS Server

Three limitations of the ZTP HTTPS server may exist, as described
below.

• It may become necessary to configure the client browser to support
the SSL2 protocol. Refer to the documentation supporting your
browser for details about how to perform this operation. For example,
in Microsoft Internet Explorer, navigate to the Tools → Internet
Options menu, click the Advanced tab, and ensure that the SSL v2.0
protocol is selected. Figure 1 displays a screen shot of the Internet
Options dialog box.
RM00411401-1211 How to Use the HTTPS Server

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

73
• When using the sample certificate with the HTTPS server in the
SSLDemo project, be aware that client browsers such as Microsoft
Internet Explorer may generate warning messages while processing
the sample certificate (an example is shown in Figure 2). The first
warning typically encountered occurs because the certificate was self-
signed; therefore a trusted root certificate authority (CA) does not
exist in the certificate chain. The second warning is generated
because the certificate’s subject (the distinguished name of identity of
the SSL server) does not match the server’s website or IP address.
These warnings are not generated when the CA issues a valid certifi-
cate, in which the CN value matches the server’s name or IP address.

Figure 1. Internet Options Dialog Box
RM00411401-1211 How to Use the HTTPS Server

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

74
• A single SSL certificate is supported in the current SSL layer imple-
mentation.

How to Use the Shell

ZTP provides a shell that allows you to interact with the system by using
commands that are transferred via a remote terminal. This remote termi-
nal can be a PC running a terminal program, such as HyperTerminal via a
serial connection, or to a Telnet terminal via an Ethernet connection. For
more information about Telnet, see the How to Use the Telnet Server sec-
tion on page 57.

Shell code is included in the CommoProtoLib.lib library. To include
the shell in your application, call the shell_init function in the code,
as follows:

Figure 2. Security Alert Warning Message
RM00411401-1211 How to Use the Shell

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

75
INT16 shell_init(RZK_DEVICE_CB_t * fd)

In the call statement above, fd is the device ID of the device over which
the shell is to operate. The following code example shows how to enable
the shell over the UART0 console.

RZK_DEVICE_CB_t *TTYDevID;
struct devCap *devSerial;

devSerial = (struct devCap *)malloc (sizeof(struct
devCap));
devSerial->devHdl = (VOID*)CONSOLE;
devSerial->devType = 0;
if
((TTYDevID=RZKDevOpen(“TTYM”,(RZK_DEV_MODE_t*)
devSerial))==(RZK_DEVICE_CB_t*)SYSERR)
{
 return SYSERR;
}
shell_init(TTYDevID);

The set of commands available through the shell is configurable by modi-
fying the defaultcmds array in the shell_conf.c file, which is dis-
cussed in the the Configuring the SHELL section on page 24. These shell
commands are described in the the ZTP Shell Command Reference sec-
tion on page 103. Shell commands can also be added at run time by using
the shell_add_commands function (from shell.h), as follows.

void shell_add_commands(struct cmdent *cmds, UINT16
ncmds, UINT8 bShType);

The shell_add_commands function contains three parameters:

• cmds

• ncmds

• commandType
RM00411401-1211 How to Use the Shell

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

76
cmds is a pointer to an array of cmdent structures containing information
required to add a command. The cmdent structure is the same structure
used to configure the set of shell commands in shell_conf.c. The
information contained in the cmdent structures includes the following
elements:

cmdnam. The character string representing the name of the command.

cbuiltin. This field should always be set to TRUE for forward compatibil-
ity.

cproc. The function to be called for the cmdnam command in the shell.
The available shell functions that can be identified with the cproc param-
eter are shown in the shell.h file; they are identified by a name with a
prefix of x_.

cnext. This field should always be set to NULL for forward compatibil-
ity.

helpDesc. The character string representing the help description for each
command.

ncmds. Represents the number of commands to be added to the shell.

commandType. Represents the type of the command added to the shell.
There are two values defined for this parameter: SHELL_ZTP identifies
the command as a ZTP command, and SHELL_TELNET identifies the
command as a Telnet command.

Both SHELL_ZTP and SHELL_TELNET are defined in shell.h.

The following code example shows how shell commands can be added
using the shell_add_commands function.

struct cmdent *mycmds;
mycmds = getmem(sizeof(struct cmdent) * 1);

/* Set up mail command */
mycmds[0].cmdnam = "mail";
mycmds[0].cbuiltin = TRUE;
mycmds[0].cproc = (SHELL_CMD)x_mail;
RM00411401-1211 How to Use the Shell

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

77
mycmds[0].cnext=(struct cmdent *)NULL;
mycmds[0].helpDesc="Sends mail using SMTP\n";

/* Add SMTP demo command */
shell_add_commands(mycmds, 1, SHELL_ZTP);
mycmds = getmem(sizeof(struct cmdent) * 1);

/* Telnet quit command */
mycmds[0].cmdnam = "quit";
mycmds[0].cbuiltin = TRUE;
mycmds[0].cproc = (SHELL_CMD)Shell_TelnetQuit;
mycmds[0].helpDesc = "Quits Telnet\n";
mycmds[0].cnext=(struct cmdent *)NULL;

shell_add_commands(mycmds, 0, SHELL_TELNET);

A prepackaged number of network commands can be added as a set, as
shown in the following code fragment.

/* Make the network-related shell commands available
/* to all shells */
shell_add_commands(netcmds, nnetcmds,SHELL_ZTP);
netcmds and nnetcmds are externals, as declared in
shell.h.

To use the shell, log in to the shell with the configured user name and
password located in the ZTPConfig.c file. Refer to the ZTPConfig.c
file to review the values that are set for the defaultUsrName and pass-
word variables. This file is located in the following path:

..\ZTP\Conf\ZTPConfig.c

How to Use SNMP

ZTP supports the SNMPv1, SNMPv2 and SNMPv3 versions of the Sim-
ple Network Management Protocol. To enable the SNMPv1 agent
included in ZTP, call the ztpSnmpV1Init() API from the main() rou-
RM00411401-1211 How to Use SNMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

78
tine. This call activates the SNMPv1 agent that responds to SNMP
requests for objects in the default MIB.

To enable SNMPv2, call the ztpSnmpV2Init() API from the main()
routine. The SNMP v3 protocol is a separate package bundled along with
SSL. To work with SNMP v3, install ZTP, then install the SSL package.

With an eZ80 CPU, you can run only one SNMP agent at a time. There-
fore, only one of the APIs, ztpSnmpV1Init(), ztpSnmpV2Init() or
ztpSnmpV3Init(), must be called.

The SNMP implementation in ZTP includes objects within the following
MIB-II groups:

• System

• Interfaces

• Address translation

• IP

• ICMP

• TCP

• UDP

• SNMP

The following sections guide you through how to add objects unique to
the application in the MIB.

Object Names

In the ZTP implementation, object identifiers are described by the follow-
ing OID structure.

Note:
RM00411401-1211 How to Use SNMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

79
typedef struct objId
{
 UINT16 objId[32];
 UINT16 oidLen ;
}OID ;

Therefore, the longest object identifier that ZTP can support must not be
greater than 32 subidentifiers. The following code fragment provides an
example.

1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.
22.23.24.25.26.27.28.29.30.31.32

Because each subidentifier is a 16-bit value, the largest value of any subi-
dentifier is restricted to being 65535.

For example, to declare an object identifier in your project that contains
the value 1.2.3.4, the following definition is used:

OID SampleOid = { {1,2,3,4}, 4 };

Because of the popularity of SNMP, it is likely that the IANA’s Private
Enterprise codes will soon require at least 24 bits to contain new assign-
ments. Therefore, a future version of ZTP will redefine object subidentifi-
ers to be of the unsigned int (24-bit) type, or possibly the UINT32 (32-bit)
type.

Object Types

Objects within the SNMP MIB are restricted to use a subset of the primi-
tive data types defined within the ASN.1 standards, such as integers, octet
strings, and object identifiers. In addition, objects can be defined using
SNMP-specific data types such as IP address, counter, gauge, and
timeticks – each of which are defined using ASN.1 primitive data types.
SNMP also allows these primitive data types to be aggregated to create
lists or tables using the ASN.1 sequence constructor type. By using a

Note:
RM00411401-1211 How to Use SNMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

80
restricted set of data types, SNMP management tools from one vendor
can interoperate with agents from a different vendor as they use ASN.1.

Table 5 lists the ASN.1 primitive data types supported by ZTP.

As an implementation limit, the maximum size of an integer and octet
string is constrained by the value that is assigned to the variable
g_snmpMaxObjectSize in snmp_conf.c. The default value of this
variable is 400. Therefore, the default maximum length for any integer or
octet string manipulated by ZTP is 400 bytes. If such large objects are not
required, you can reduce the value of the g_snmpMaxObjectSize vari-
able. Ensure that g_snmpMaxObjectSize does not exceed 2048 bytes,
because the receive or transmit packet size is limited to 4000 bytes.

ZTP also supports the following SNMP-specific object types:

DisplayString. SN_DISPLAY_STRING is a 255-byte octet string contain-
ing text characters. ZTP allows you to change the maximum length of dis-
play strings.

Table 5. ASN.1-Supported Primitive Data Types

ASN.1 Data Type ZTP Data Type Description

Integer ASN1_INT An arbitrarily long signed number.

Octet String ASN1_OCTSTR An arbitrarily long string of octets (bytes).

Object Identifier ASN1_OBJID An object Identifier used to name objects
within the MIB.

NULL ASN1_NULL An object that does not contain a value is
said to be of type NULL.

Note:
RM00411401-1211 How to Use SNMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

81
If you are using ZDS II, review the snmp_conf.c file, which is located in
the following path:

<ZTP Install Directory>\ZTP\Conf

IpAddress. ASN1_IPADDR is a 4-byte octet string used to contain an IP
address.

Counter. ASN1_COUNTER is a 32-bit monotonically-increasing unsigned
integer that wraps from FFFFFFFFh to 00000000h.

Gauge. ASN1_GAUGE is a 32-bit unsigned integer that latches when it
reaches FFFFFFFFh.

PhysAddress. SN_PHYS_ADDR is a 6-byte octet string that contains a 48-
bit MAC address.

TimeTicks. ASN1_TIMETICKS is a 32-bit unsigned integer that counts
time in units of 10 ms since the beginning of a defined epoch.

SNMP Objects

Every SNMP object contains a name, a type, and a value. Object names
are specified as Object Identifiers of type SnmpObj (as described in the
Object Names section on page 78; the set of permissible object types is
described in the the Object Types section on page 79). You can assign
and/or update an object value in the user’s SNMP application. Review the
snmpv1.h file, which is located in the following path:

\ZTP\Inc\

Before discussing object updates, the definition of an SNMP object in
ZTP must be examined, as the following code fragment shows.

typedef struct snmpObj
{

UINT16 *objId ;

Note:
RM00411401-1211 How to Use SNMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

82
UINT8 objIdLen ;
UINT8 objValType;
SNMPObjValue objVal;

}SNMPObj ;

In this code fragment, an SNMPObjValue structure is defined as:

typedef union snmpObjVal
{

void *pData;
OID *pOid;
SNMPDisplayStr *pDescr;
INT8 *pInt8;
INT16 *pInt16;
INT32 *pInt24;
INT32 *pInt32;
UINT8 *pUint8;
UINT16 *pUint16;
UINT32 *pUint24;
UINT32 *pUint32;
UINT8 *pPhys;
UINT32 *pIP;
UINT32 *pCounter;
UINT32 *pGauge;
UINT32 *pTimeTicks;

} SNMPObjValue;

The code above shows that an SNMP value is nothing more than a pointer
to an arbitrary block of data, the meaning of which depends on the objVal-
Type member specified in the SNMPObj structure. For example, suppose
your company produced two types of widgets: Type1 and Type2, and that
you need to uniquely identify variables within the Type2 widget that con-
tain the license key and serial number. Using named labels, the SNMP
representation of these variables is:

private.enterprises.your_company.type2.license_key
private.enterprises.your_company.type2.serial_number
RM00411401-1211 How to Use SNMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

83
Before you can access these variables using SNMP, an administrator in
your company must assign a (unique) numeric value to these Type1 and
Type2 widgets, as well as (unique) values to the license key and serial
number variables. In this example, Type1 widgets are assigned a numeric
value of 1, Type2 widgets are assigned a value of 2, the license key a
value of 10, and the serial number a value of 20. If your company’s
IANA-assigned enterprise ID is 22222, then the numeric representation of
these variables is:

4.1.22222.2.10
4.1.22222.2.20

Suppose the program that maintains the serial number stores its value in a
32-bit variable named SerialNumber. The code fragment below, then,
illustrates how you can construct an SNMP object to describe the serial
number variable in the Type2 widget produced by your company:

UINT32 SerialNumber = 0x11223344;
UINT16 SerNumOid[] = {4, 1, 22222, 2, 20, 0};
SNMPObj SerNumObj[] = {&SerNumOid, 6, SN_UINT32,
 &SerialNumber};

In the above code, notice that the standard iso.org.dod.internet
prefix of 1.3.6.1 is missing from the beginning of the object identifier.
It is not present because the SNMP library automatically prepends this
prefix to all objects within the g_snmpMIBInfo that do not begin with a
subidentifier of 1. This prepend restricts you from using objects within
the iso.org.dod.internet branch of the set of all possible object
identifiers. Additionally, to define objects within the
iso.org.dod.internet.directory tree, you must fully specify all
of the subidentifiers to the root.

To see how objects with predefined sizes are defined, simply use a Type
field that matches the type of your variable, and set the object value to ref-
erence the variable. To define octet strings and integers of arbitrary
length, wrap your variable in an SNMPDisplayStr structure. This SNMP-
DisplayStr structure is defined as:

typedef struct sn_descr_s
RM00411401-1211 How to Use SNMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

84
{
void * pData;
UINT16 Length;

} SNMPDisplayStr;

In this structure, the Length member indicates the number of bytes of
data currently required to contain the value of this object; the maximum
length is limited to 255 bytes. For example, the code fragment below
defines an integer – which can be up to 16 bytes long – as the eighth
object within the blackbox group. The current value of this integer is
112233445566h.

INT8 Data16[16] = {0x66,0x55,0x44,0x33,0x22,0x11};
SNMPDisplayStr Data16Descr =
{ Data16, 6 };

UINT8 snmpData[] = {{4,1,22222,115,8,0} ;

SNMPObj SNObject_for_Data16 =
{ & snmpData , 6 , SN_DISPLAY_STR, & Data16Descr };

Adding Objects to the MIB

After examining how to define SNMP objects, it is time to add an object
to the MIB. In ZTP, the implementation of the MIB is contained within
the g_snmpMIBInfo [] array. Each entry in the g_snmpMIBInfo []
array is of type SNMPMIBData, as shown in the following code fragment.

/** MIB structure **/
typedef struct snmpMIBs
{
 /* MIB object */
 SNMPObj mi_obj;
 /** Read/write status of the MIB **/
 BOOL mi_writable;
 /** Function to implement the get/set status of the
 /** MIB **/
 INT16 (*mi_func)
 (SNMPObjLs *,
RM00411401-1211 How to Use SNMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

85
 struct snmpMIBs *, UINT8
) ;
/** pointer to the next MIB **/
 struct snmpMIBs *mi_next;
}SNMPMIBData;

The different structure members of this MIB are described below.

mi_obj. An SNMP object, as described in the previous section.

mi_writable. A Boolean flag that, if set to TRUE, informs the SNMP
library that the value of this object can be modified using the SNMP Set
primitive.

Any object can be the target of an SNMP Get Next primitive; however,
only leaf objects can be specified as the targets of a Get or Set request.

The mi_func structure member identifies the address of a routine that the
SNMP library uses to perform Get, Get Next and Set requests on the
object. The SNMP library contains a default routine called snleaf that
manipulates all leaf variables in the MIB. Similarly, the library contains a
routine called sntable that parses requests within tables. Unless supply-
ing your own routine to parse tables and leaves is preferred, this structure
member should always be specified as either snleaf or sntable (or
NULL for aggregate objects).

The mi_next structure member should always be specified as NULL in
the mib[] array. The system determines this value at run time and
updates this field as required.

As an example of how to add entries to the MIB, consider the following
declaration of the system group in the g_snmpMIBInfo [] array in the
snmib.c file:

const UINT16 g_snmpMgmt[] = {2};
const UINT16 g_snmpMib2[] = {2,1} ;

Note:
RM00411401-1211 How to Use SNMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

86
const UINT16 g_snmpSystem[] = {2,1,1} ;
const UINT16 g_snmpSystemDecsr[] = {2,1,1,1,0} ;
const UINT16 g_snmpSysObjectID[] = {2,1,1,2,0} ;
const UINT16 g_snmpSysUpTime[] = {2,1,1,3,0};
const UINT16 g_snmpSysContact[]= {2,1,1,4,0} ;
const UINT16 g_snmpSysName[] = {2,1,1,5,0} ;

SNMPMIBData g_snmpMIBInfo[] = {
{ g_snmpMgmt, 1, T_AGGREGATE, NULL, READ_ONLY, NULL,
NULL },
{ g_snmpMib2, 2, T_AGGREGATE, NULL, READ_ONLY, NULL,
NULL },

// System Group
//system.
{ g_snmpSystem, 3, T_AGGREGATE, NULL, READ_ONLY, NULL,
NULL },
//system.sysDescr,
{ g_snmpSystemDecsr, 5, SN_DISPLAY_STR, &g_sysDescr,
READ_ONLY, snleaf, NULL },
{ g_snmpSysObjectID, 5, ASN1_OBJID, &g_sysObjectID,
READ_ONLY, snleaf, NULL },
//system.sysUpTime
{ g_snmpSysUpTime, 5, ASN1_TIMETICKS, &SysUpTime,
READ_ONLY, snleaf, NULL },
//system.sysContact
{ g_snmpSysContact,5, SN_DISPLAY_STR,
&g_sysContact,READ_WRITE, snleaf, NULL },
//system.sysName
{ g_snmpSysName, 5,
SN_DISPLAY_STR,&g_sysName,READ_WRITE, snleaf, NULL }
};

The first element in the system group is an aggregate identifier for the
group itself. Aggregate objects are not accessible using the Get, Get
Next or Set SNMP primitives. However, their use in the
g_snmpMIBInfo [] array is required to allow the library’s parsing rou-
tines to properly traverse the tree of objects in the MIB.
RM00411401-1211 How to Use SNMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

87
There are seven objects in the system group. Each of these objects is a
leaf node, and the mi_func structure member for these entries is
snleaf. Because each leaf entry is a child of the system aggregate object,
the mi_prefix structure member names are all specified as system.
Therefore, the text names and completely-specified corresponding object
identifier for each of the entries in the system group are:

system.sysDescr 1.3.6.1.2.1.1.1.0
system.sysObjectID 1.3.6.1.2.1.1.2.0
system.sysUpTime 1.3.6.1.2.1.1.3.0
system.sysContact 1.3.6.1.2.1.1.4.0
system.sysName 1.3.6.1.2.1.1.5.0
system.sysLocation 1.3.6.1.2.1.1.6.0
system.sysServices 1.3.6.1.2.1.1.7.0

Observe that a zero is appended as the final subidentifier for all leaf
objects. This zero is required by SNMP to uniquely identify the instance
of the indicated object. Objects within tables are uniquely identified by an
index that spans one or more subidentifiers in the object identifier (these
tables are discussed in the next section).

Finally, notice that the mi_writable structure member is set to TRUE for
sysContact, sysName and sysLocation. As a result, remote SNMP
management entities are able to modify the values of these objects by
using the Set SNMP primitive.

Using SNMP to Manipulate Leaf Objects in the MIB

After adding leaf objects to the MIB, ZTP’s SNMP agent must manipu-
late these leaf objects by calling the ztpSnmpV1Init() function from
within your main() routine. The snleaf function implemented in the
library automatically processes all Get, Get Next and Set requests
received from remote management entities for the objects added to the
g_snmpMIBInfo [] array.
RM00411401-1211 How to Use SNMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

88
It is beyond the scope of this manual to describe how remote SNMP man-
agement application programs operate. Consult the technical documenta-
tion provided with your SNMP management application for information
about how to perform Get, Get Next and Set SNMP requests.

Working with Tables

SNMP can also be used to manipulate tables of objects. The table itself is
an aggregate object, and therefore not accessible; i.e., a table object iden-
tifier cannot be used as the target of a Get or Set operation. Only
instances of objects created within the table are accessible when using
Get and Set.

Before describing how tables are manipulated in ZTP, it is necessary to
provide an understanding of the relationship between object identifiers
and object instances within the table. A table is a list of rows that contain
one or more columns. To access a particular item in the table, you must
know which column and which row contain the item of interest. Within
the SNMP protocol, tables are lists of objects that pertain to some entity.
Each column in the table describes an attribute of the entity and each
entity identifies the row of interest within the table.

Because all SNMP objects are named using object identifiers, an instance
of an object in a table can only be accessed if its row and column informa-
tion are included as part of the object identifier. Recall that for leaf nodes,
accessing an instance of an object is quite simple: if a leaf object in the
MIB has a name of x, then the object identifier of the single instance of
that object is x.0. However, for tables, a slightly more complex naming
convention is used. The generic form of an object identifier used to access
an instance of an item in a table is:

TableID.TableEntry.Colum.Row or The TableID

This object identifier identifies the location of the root of the table in the
hierarchy of objects. The TableEntry subidentifier is typically the only

Note:
RM00411401-1211 How to Use SNMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

89
child identifier of the TableID (i.e., {TableID 1}), and must be
included in the name of every instance of an object located within the
table. The Column subidentifier indicates the attribute of interest within
the TableEntry, and the Row subidentifier is the instance of the object of
interest.

Therefore, a simpler form of the object identifier for an instance of an
object in the table is:

y.Row

In this simple-form object identifier, y,{TableID.TableEntry.Col-
umn} is the name of the attribute of interest within the table.

y.Row is a leaf node in the table, and is therefore a valid object identifier
to use with the Get and Set SNMP primitives.

To provide an example, consider the ip.ipRouteTable defined in the
standard MIB. The specification defines 13 attributes (columns) for each
route (row) that appears in the table. The object identifier that corre-
sponds to the next hop (attribute 7) of any route in the table contains the
common prefix, 1.3.6.1.2.1.4.21.1.7, which corresponds to:

{ip.ipRouteTable.ipRouteEntry.ipRouteNextHop}

Therefore, the particular instance of the Next Hop attribute for a specific
1.2.3.4 route can be found by performing a Get request using an object
identifier of 1.3.6.1.2.1.4.21.1.7.1.2.3.4.

How to Add a Table to the MIB

After developing an understanding of how tables are organized by SNMP,
one can examine how tables are added to the g_snmpMIBInfo [] array
in ZTP. Consider the declaration of the following If table in the
g_snmpMIBInfo [] array in the snmib.c source file:

Note:
RM00411401-1211 How to Use SNMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

90
const UINT16 g_snmpIfTable[] = {2,1,2,2} ;
const UINT16 g_snmpIfEntry[] = {2,1,2,2,1} ;
{ g_snmpIfTable, 4, T_AGGREGATE, NULL, READ_WRITE,
NULL, NULL },
{ g_snmpIfEntry, 5, T_TABLE,
&sn_table[T_IFTABLE],READ_WRITE, sntable, NULL},

The object identifier for the root of the table is specified as 2.1.2.2. As
with leaf objects, the common prefix of 1.3.6.1 is omitted. The If
Table is an aggregate object and contains a single child, ifEntry of
type T_TABLE.

However, you might have the following questions:

• Where are the ifEntry child nodes that identify the columns of the
table?

• Furthermore, why aren’t any objects specified in the
g_snmpMIBInfo [] array for the ifEntry Table?

The reason these objects cannot be included in the g_snmpMIBInfo []
array is because the leaf nodes in the table can only be determined at run
time. Therefore, the SNMP library must call support routines at run time
that help it to perform Get, Get Next and Set requests for objects
located beneath the ifEntry node in the g_snmpMIBInfo [] array.

These support routines are specified in the sn_table[] array. For every
object in the g_snmpMIBInfo [] array of type T_TABLE, its value
member must reference an SNMP_TABLE_S structure in the sn_table[]
array, as indicated in the following code fragment.

typedef struct SNMP_TABLE_S
{

SNMP_GET_FUNC ti_get; /* get operation */
SNMP_NEXT_FUNC ti_next; /* get next index */
SNMP_SET_FUNC ti_set; /* set operation */
UINT16 max_fields; /* number of 'rows'

 /*in the table */
UINT16 index_len; /* number of */
RM00411401-1211 How to Use SNMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

91
 /*subidentifiers in*/
 /*index */

} SNMP_TABLE_S;

The ti_get, ti_next and ti_set members specify the helper func-
tions that the SNMP library uses when responding to Get, Get Next and
Set requests for objects within the table. If you add your own tables to
the MIB, you must implement these support routines.

The max_fields member indicates the number of columns in the table.
For example, the specification of the IF table in the standard MIB
identifies 22 attributes (child nodes) to the ifEntry. Therefore, the
max_fields parameter for the IF table is specified as 22.

The index_len member defines the number of subidentifiers in the
name of the TableEntry within the g_snmpMIBInfo [] hierarchy. For
example, the complete TableEntry name of the ifEntry is:

1.3.6.1.2.1.2.2.1

However, in the ZTP implementation, the common root of 1.3.6.1 is
not included for any entry in the g_snmpMIBInfo []. Therefore, the
index_len of the ifEntry in the ZTP implementation is 5, which cor-
responds to an identifier of 2.1.2.2.1.

The ti_mip member cross-links the sn_table[] entry to the corre-
sponding TableEntry in the g_snmpMIBInfo[] array, the object value
of which references this sn_table[] entry. The SNMP library automati-
cally determines the value of this pointer and updates the ti_mip value
during SNMP initialization.

To add a table to the g_snmpMIBInfo [] array, you must also add an
entry to the existing sn_table[] array to describe your table to the
SNMP library. The code fragment below indicates the addition of a table
to the g_snmpMIBInfo [] array.

{
 g_udpEntry,
 5,
RM00411401-1211 How to Use SNMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

92
 T_TABLE,
 &sn_table[T_SUETABLE],
 READ_ONLY,
 sntable,
 NULL
UINT16 g_snmpTableAgEg[] = {4,1,12897,2,19} ;
UINT16 g_snmpTableEg[] = {4,1,12897,2,19,1},

{ g_snmpTableAgEg , 5 , T_AGGREGATE, NULL,READ_ONLY,
NULL, NULL},
{ g_snmpTableEg , 6}, T_TABLE, &sn_table[7],
READ_ONLY, sntable, NULL }

The corresponding entry in the sn_table[] array is:

{sdt_get, sdt_next, sdt_set, SNUMF_DTTAB,
SDT_INDEX_LEN, NULL }

This table contains SNUF_DTTAB fields (currently defined to be 3). The
rows in the table are indexed by a single subidentifier so that the value of
SDT_INDEX_LEN is defined to be 1.

The SNMP_GET_FUNC Support Routine

The SNMP library calls the routine you specify in the ti_get field of the
SNMP_TABLE_S structure when it requires the value of the named object
in response to a Get SNMP request. A compatible function prototype for
the SNMP_GET_FUNC function pointer is shown below.

INT Table_GET(SNMPObjLs * pObj);

In the Table_GET function, the pObj parameter references an incomplete
SNMP object. Recall that SNMP objects contain a name, a type, and a
value. When processing a Get SNMP request, the library is only able to
determine the name (pObjobjId) of the requested object. It is up to your
Table_GET routine to either supply the type and value of the object or to
return integer error codes such as SERR_NO_SUCH. How objects are
stored within your table is an implementation decision.
RM00411401-1211 How to Use SNMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

93
The pObj objId parameter contains the object identifier that corre-
sponds to the instance of the object that is the target of a Get request. The
SNMP library has no means by which to determine if a requested object is
actually within your table. The only preprocessing that the library per-
forms on the requested object identifier is to remove the common mib[]
root prefix of 1.3.6.1, and to ensure that the requested object identifier
begins with the same subidentifiers as the TableEntry corresponding to
the ti_mip pointer in your table’s sn_table[] array entry.

Therefore, the first task to be performed in the Table_GET routine is to
ensure that the requested object is within your table. If the requested
object cannot be located in the table, return the SERR_NO_SUCH error
code to the SNMP library. Do not perform any further processing on the
pObj parameter.

As a result of verifying that the object identifier is valid, the Table_GET
routine should determine the row (table index) and column (field) of the
applicable object. Converting the row and column identifiers into a mean-
ingful index you can use at run time to access the value of the requested
object is an implementation-specific design issue.

After your Table_GET routine locates the applicable object, the next step
is to update the pObj objValType and pObj objVal fields, as appropri-
ate. For more information about SNMP objects and data types in ZTP, see
the SNMP Objects section on page 81.

As a simple example, if the Table_GET routine determines that the appli-
cable object is a 32-bit ASN.1 counter, set pObjobjValType to
ASN1_COUNTER, and set the *pObj objVal pCounter to the 32-bit
unsigned value of the counter.

The code must not modify the value of pObjobjVal. You can only mod-
ify memory referenced by one of the members of the pObj Value union.

Note:
RM00411401-1211 How to Use SNMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

94
Before calling your Table_GET handler, the SNMP library allocates a
buffer of size g_snmpMaxObjectSize and sets the pData and MaxLen
members of pObjobjVal.pDescr.

The SNMP_SET_FUNC Support Routine

The SNMP library calls the routine specified in the ti_set field of the
SNMP_TABLE_S structure when it requires you to update the value of the
named object in response to an Set SNMP request. A compatible func-
tion prototype for the SNMP_SET_FUNC function pointer is:

INT Table_SET(SNMPObjLs *pObj);

The pObjobjId parameter contains the object identifier that corresponds
to the instance of the object that is the target of a Set request. The SNMP
library cannot determine if the requested object is actually within your
table. The only preprocessing that the library performs on the requested
object identifier is to remove the common mib[] root prefix of 1.3.6.1
and to ensure that the requested object identifier begins with the same
subidentifiers as the TableEntry corresponding to the ti_mip pointer
in the sn_table[] entry.

Therefore, the first task to be performed in the Table_SET routine is to
ensure that the requested object is, in fact, within your table. If the
requested object cannot be located in the table, return the SERR_NO_SUCH
error code to the SNMP library. Do not perform any further processing on
the pObj parameter.

As a result of verifying that the object identifier is valid, the Table_SET
routine should have determined the row (table index) and column (field)
of the applicable object. To convert the row and column identifiers into a
meaningful index, you must use a design-specific implementation.

After the Table_SET routine locates the applicable object, the next step
is to verify that the pObjobjValType field is compatible with the inter-
nal representation of the indicated object. Some SNMP object types are
syntactically specified as one object type, but are encoded using a com-
patible ASN.1 primitive data type. For example, SNMP displays strings
RM00411401-1211 How to Use SNMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

95
(represented in ZTP as type SN_DISPLAY_STR) that are encoded as
ASN.1 octet strings. Therefore, even though you can create an object of
type SN_DISPLAY_STR, the SNMP library sets the pObjobjValType
parameters to ASN1_OCTSTR before calling your Table_SET routine.
Consequently, your Table_SET routine should accept an octet string as a
valid data type for the SN_DISPLAY_STR object. However, if the remote
SNMP management entity specified the object type as an ASN.1 integer
in the Set request, then your Table_SET routine should not accept the
value of the object, because an integer data type is not compatible with
either an octet string or a display string. In this case, your Table_SET
routine should return SERR_BAD_VALUE to the SNMP library and per-
form no further processing.

After the Table_SET routine verifies that the applicable object exists
within the table and that the pObjobjValType field of the object is
appropriate, the next step is to determine if the object size is valid. If the
value of g_snmpMaxObjectSize is defined appropriately, then the
SNMP library ensures that pObjobjVal does not exceed
g_snmpMaxObjectSize bytes of data. Otherwise, for object values that
use an SNMPDisplayStr (arbitrary length integers and octet strings),
ensure that the size of the object value specified in the Set operation does
not exceed the size of the local buffer you are using to contain the value of
the target object. If the value of the object specified in the Set operation
exceeds the storage capacity of the local buffer, your Table_SET routine
should return SERR_TOO_BIG and not perform any more processing of
the pObj parameter.

It can also be appropriate to verify the correctness of the object value
specified in the Set operation. For example, if you define an object
within your table of type Integer and specify that the permissible range
of values for that integer is between 10 and 20, then you can either allow
the remote management entity to assign an invalid value to your object
(such as +1729, or –15) or you can return SERR_BAD_VALUE to the
SNMP library and perform no further processing on the pObj parameter.
RM00411401-1211 How to Use SNMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

96
If the object name, type and value specified in the Set operation are all
appropriate, then the final step to perform in the Table_SET routine is to
copy the value of the pObj input parameter into the memory location in
which you are storing the value of the target object. It is important to copy
the contents of the value into your local buffer and not to retain the value
of the pointer that the library provides to the object data. This task is
important because the object value supplied by the SNMP library is
located in a dynamically allocated buffer that is released after your
Table_SET routine returns control to the SNMP library.

As a simple example, if the Table_SET routine determines that the target
object is a 32-bit ASN.1 counter, you would set the value of the counter to
the value * pObj objVal pCounter.

For more information about objects, see the SNMP Objects section on
page 81.

The SNMP_NEXT_FUNC Support Routine

The SNMP library calls the routine specified in the ti_next field of the
SNMP_TABLE_S structure when it requires you to determine the name of
the object that immediately follows (in lexicographical order) the speci-
fied object identifier. A compatible function prototype for the
SNMP_SET_FUNC function pointer is:

INT Table_NEXT(UINT16 * pSubID);

The pSubID pointer references an array of subidentifiers that begins with
the table index (i.e., row) of interest. The Table_NEXT routine must mod-
ify this list of subidentifiers to match the index of the next row in the
table. If there is no element in the table that follows the specified index,
the Table_NEXT routine should return SERR_NO_SUCH and not modify
the specified list of subidentifiers.

The key to implementing the Table_NEXT function is to understand what
is meant by lexicographical order. Lexicographical order is sometimes
referred to as dictionary order. In a dictionary, the definition of the word
the appears before the definition of the word then but after the definition
RM00411401-1211 How to Use SNMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

97
of the word tap. Therefore, the lexicographical ordering of these words is
tap the then.

For example, if your table index is defined as an IP address containing
three rows, then the index of each row is:

192.168.1.50
192.168.1.200
192.168.4.75

Therefore, it is easy to see that if the pSubID array contains the value
192.168.1.50, then the next index (in lexicographical order) that
appears in your table is 192.168.1.200. If the pSubID array contains
the values 192.168.1.60, there is no row in your table with this index.
However, the next row in the table that follows in lexicographical order is
still 192.168.1.200, because the value 60 is between 50 and 200. Simi-
larly, the next entry in the table after 192.168.2.1 is 192.168.4.75.

Determining lexicographical order is slightly more complicated if the
pSubID contains more or less subidentifiers than the amount you expect
as a valid index. For example, given an input subidentifier string of
192.168.2, the next index is 192.168.4.75. Similarly, the next index
after 192.168.1.3.4.5.6.7.8.9. is also 192.168.4.75. Two other
special cases to consider are the case in which the pSubID input array ref-
erences an item before the first object in your table (for example, for an
input of 100.1, the next row in the table is 192.168.1.50) and the case
in which there is no element in the table that follows the input list of subi-
dentifiers. For example, given an input of 192.168.4.75, there is an
element in the table that follows this subidentifier so that the
Table_NEXT routine should return SERR_NO_SUCH.

The SNMP library automatically pads subidentifiers shorter than the
index_len specified in the sn_table[] array entry for your table with
a zero to simplify lexicographical processing.
RM00411401-1211 How to Use SNMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

98
Updating SNMP Values

The SNMP library automatically updates the values of SNMP objects
defined in the standard MIB. However, you are free to update the values
of SNMP objects specific to your application, if appropriate. For exam-
ple, if you define an SNMP object of type Counter to count some event
unique to your application and add it to the g_snmpMIBInfo [] array,
the SNMP library’s Get and Set functions obtain and set the value of the
object in response to requests from a remote SNMP management entity.
However, it is up to your application to increase the value of the counter
when the trigger event occurs. Conversely, if you define an SNMP object
of type Octet String to contain the serial number of your embedded
device, it is likely that you do not require an update of this value during
run-time.

Additionally, the SNMP library does not use critical sections (i.e., does
not disable interrupts) while manipulating objects within the
g_snmpMIBInfo [] array. If this issue causes problems for your appli-
cation, then Zilog recommends that you update SNMP objects in a pro-
cess that runs at a lower priority than the SNMP agent (which currently
executes at priority 20) and that your application only updates SNMP
variables from within a critical section. The first measure ensures that the
process in your application which updates SNMP variables can never pre-
empt the SNMP agent while it is manipulating an object within the
g_snmpMIBInfo [] array. The second measure ensures that the SNMP
agent (nor any other process in the system) is not able to preempt the pro-
cess in your application that updates SNMP variables.

The g_snmpMIBInfo [] array is contained in RAM. Any changes made
to the g_snmpMIBInfo [] array are lost when power is removed from
the system.

Note:
RM00411401-1211 How to Use SNMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

99
Trap Generation

The SNMP library in ZTP is capable of generating the following SNMP
v1 traps:

• Cold Start trap

• Link Up trap

• Link Down trap

• Authentication Failure trap

• Enterprise-specific trap

A Cold Start trap is generated when the system boots up, regardless of
whether the system is warm-booted (for example, executing the reboot
command from the shell) or cold-booted (disconnecting and reconnecting
the power supply). This situation occurs because the g_snmpMIBInfo
[] is stored in RAM, and any changes made to the MIB – which could
affect the operation of this device – are lost when the system is reinitial-
ized. Therefore, from an SNMP perspective, every initialization is a Cold
Start.

The system generates a Link Up trap whenever a network interface is
(re)activated. For example, during system initialization, the Ethernet
interface becomes active and a Link Up trap is generated.

When a network interface changes state from active to inactive, a Link
Down trap is generated. For example, a Link Down trap is generated
when a PPP link is disconnected.

If the SnmpEnableAuthenTraps variable is set to SNMP_AUTH_TRAPS_
DISABLED, the system generates an Authentication Failure trap whenever
a request (Get, Get Next or Set) is received containing a community
name that does not match the community name specified in the
g_snmpCommunityName[] string. The SnmpEnableAuthenTraps
variable can be modified by your application or by a remote management
entity.
RM00411401-1211 How to Use SNMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

100
The above-described traps are sent by the SNMP system automatically,
but an enterprise-specific trap must be sent by the application itself. The
code fragment that follows provides an example of how an enterprise-spe-
cific trap is sent using the snmpGenerateTrap() API.

INT16
snmpGenerateTrap
(

UINT8 *pMgrAddress,
UINT8 Type,
UINT32 Code,
UINT16 NumObjects,
SNMPObj *pObjList

)

In this snmpGenerateTrap() code, the following parameters can be
defined:

pMgrAddress. The IP Address of the target device. If the parameter
passed is NULL, then the traps are directed to the device identified by the
g_snmpTrapTargetIP[] variable in the snmp_conf.c file.

Type. The Type parameter should always be specified as
SN_TRAP_ENTERPRISE_SPECIFIC.

Code. The Code parameter is a 32-bit value unique to the application that
identifies the particular trap message that is generated. For SNMPV2 and
SNMPV3, this parameter is not valid.

NumObjects. The NumObjects parameter specifies the number of SNM-
PObj structures that must be included in the body of the trap message. If
the application-specific trap does not require any of the objects to be
included in the trap message, then set this parameter to 0.

pObjList. The pObjList parameter is an array of NumObjects
SNMPObj structures that identify the SNMP objects to be included in the
body of the trap message. If the application-specific trap does not require
any of the objects to be included in the trap message, set this parameter to
NULL.
RM00411401-1211 How to Use SNMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

101
To send an SNMPV2/SNMPV3 enterprise-specific trap, you must provide
the trap OID in the g_snmpEnterpriseOid[] variable located in the
snmp_conf.c file.

Working with SNMPv3

ZTP SNMPv3 supports the HMAC MD5 protocol for authentication and
the CBC-DES protocol for privacy.

To add new MIBs to SNMPv3, you must modify the snmpv3_mib.c file
located in the ..\ZTP\Conf folder. For more details about how to add
MIBs to SNMP, see the Adding Objects to the MIB section on page 84.

SNMPV3 is released along with SSL as a separate package; the SNMPV3
code is located in CommoProtoLib_SNMPV3.lib file. To work with
SNMPV3, define a SNMPV3 macro and add the
CommoProtoLib_SNMPV3.lib library to the workspace.

SNMPV3 Demo project workspaces are located in the following path:

<ZTPInstalledDirectory>\ZTP_X.Y.Z_Lib_ZDS\ZTP\
SamplePrograms\SNMPV3Demo

In this path, X.Y.Z represents the ZTP version number.

You must configure the eZ80 CPU for authentication and privacy fea-
tures. The structure to provide the required information is:

typedef struct snmpV3_usrs
{
 UINT8 username [SNMP_USER_NAME_LEN];
 UINT8 snmpAuthKeyChange [SNMP_AUTH_PASSWORD_LEN];
 UINT8 authReqd;
 UINT8 snmpPrivKeyChange [SNMP_PRIV_PASSWORD_LEN];
 UINT8 privReqd;
} SNMPV3_USERS;

In the above structure, the following parameters can be defined:

username. A parameter is a string that contains a valid user name.
RM00411401-1211 How to Use SNMP

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

102
snmpAuthKeyChange. This parameter specifies a authKeyChange
value required for authentication.

authReqd. This parameter is used to enable or disable the authentication
feature.

snmpPrivKeyChange. This parameter is a privacyKeyChange value
required for privacy.

The Snmp_Users global variable that is defined in the
snmpV3_config.c file contains the default values. You can change
these values or add new values, if required.

How to Use the SNTP Client

To get the current time from the Time server using the Simple Network
Time Protocol (SNTP), ZTP provides the ztpSNTPClient function,
which is used to update the real-time clock within the Zilog Real-Time
Kernel (RZK). This function establishes a separate UDP connection to
communicate with the server, and sends the message format to the speci-
fied targetIPAddress through portNum 123. The function receives
the time (in seconds) from targetIPAddress, converts this time into
the RZK Device format, and updates the RZK real-time clock.

The prototype of the ztpSNTPClient function is:

INT16 ztpSNTPClient(INT8 *targetIPAddress, INT16
portNum)

In this prototype, targetIPAddress is a pointer to the IP address of the
time server, and portNum is the port number through which the client
communicates with the Time server.
RM00411401-1211 How to Use the SNTP Client

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

103
ZTP Shell Command Reference

ZTP includes a shell program that allows you to interactively enter com-
mands and query status information. The shell can be used via any device
over which a TTY driver is layered. By default, the ZTP system config-
ures Serial Port0 for use as a console to the shell. Similarly, the Telnet
server layers a TTY device over the TCP connection created to service the
Telnet session and allow another instance of the shell to run. You can
modify the list of default commands that can be executed from within the
shell. For details, see the description of shell_conf.c file in the the
Configuring the SHELL section on page 24. Additionally, see the descrip-
tions of shell_add_commands and shell_init functions in the the
How to Use the Shell section on page 74.

Table 1 provides a brief description of the shell commands.

Table 1. Shell Commands

Shell
Command Description

addusr Adds a user to the FTP server database

arp Display the ARP table

bpool Display buffer pool information

cd Changes the current working directory

close Used to terminate a Telnet session but remain in Telnet mode

copy Copies a file

cwd Displays the current working directory

del Deletes a file

deldir Deletes a directory

deleteusr Deletes a user from the FTP server database

deltree Deletes a directory, including the subdirectories and the files within the
directory
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

104
devs Print device table

dir Displays the list of files and directories present in a directory

echo Echo arguments

exit Exit shell

ftp Starts an FTP session

gettime Returns the date and time

hang Puts system into a tight loop (system hang) for test

help Print help information

ifstat Print interface status

igmp Subscribe and unsubscribe to multicast groups

kill Kill a process

mail Interactively compose an email message

md Creates a directory

mem Print memory usage information

move Moves a file from source to destination

open Used to initiate a Telnet session

ping Send ICMP echo (ping) packets

port Display port information

pppstart Start PPP connection

pppstop Force the PPP layer to disconnect from the remote peer

ps Display process information

quit Used to terminate a Telnet session but exit Telnet mode

reboot Reboot system

ren Renames a file

rendir Renames a directory

sem Display semaphore information

settime Sets the time and date

Table 1. Shell Commands (Continued)
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

105
Table 2 provides brief description of the shell commands that are applica-
ble only to Zdots SBC WLAN solution.

sleep Places the shell process to sleep for a specified number of seconds

telnet Starts a telnet session

tftp_get Download a file from a TFTP server

tftp_put Upload a file to the TFTP server

type Displays the contents of a file

vol Displays the disk details

SNTPClient Retrieves the current time from SNTP server

setipparams Stores network related parameters such as IP address, subnet Mask in
the nonvolatile memory.

configwlan Stores the SSID and encryption key in nonvolatile memory. It requires a
pass phrase to generate the key.

keyIndex Changes the WEP encryption key at run time

pass-phrase Generates PSK for WPA and WPA2

Table 2. Shell Commands (Zdots® SBC WLAN Solution)

Shell
Command Description

scan Searches and displays the available wireless Access Points in the vicin-
ity.

join Allows the Zdots SBC to connect to a particular Wireless Access Point
that is scanned previously by the scan command.

configwlan Adds WLAN configuration parameters to Data persistence.

Table 1. Shell Commands (Continued)
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

106
ADDUSR

Syntax
addusr username password

Description

The addusr command adds a user to the FTP server database. You can
log in from an FTP client only if the login name and password has already
been added by a system administrator with the addusr shell command.

Argument(s)

None.

Sample Usage

[ZTP EXTF:/]>addusr john john123
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

107
ARP

Syntax
arp

Description

The arp shell command prints resolved Internet addresses to physical
address maps. There is one row in the table for each of the Datalink/Phys-
ical Layer mappings in effect.

Argument(s)

None.

Sample Usage

[ZTP EXTF:/]>arp

172.16.6.1 0:E0:7B:F3:96:B2
172.16.6.2 0:D0:B7:8F:5:92
172.16.6.10 0:80:C8:1:96:9
172.16.6.4 0:D:56:29:FE:E1
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

108
BPOOL

Syntax
bpool

Description

The bpool shell command displays information about each of the sys-
tem’s buffer pools. Each line in the display corresponds to one of the sys-
tem’s fixed buffer pools. The state field indicates the state of the buffer
pool. The count field indicates the number of buffers initially created
within each pool. Each buffer is size bytes long.

Because these pools are a shared resource, each use a semaphore to syn-
chronize requests for buffers. UsedBlocks indicates the number of avail-
able blocks in the semaphore.

Argument(s)

None.

Sample Usage

[ZTP EXTF:/]>bpool
pool state count size UsedBlocks
--
B8FC53 -
B8FC78 -
B8FC9D -
B8FCC2 -
B8FE7E -
B8FEA3 -
B8FEC8 -
B8FEED -
B8FF12 -
- means unallocated
[ZTP EXTF:/]>
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

109
CD

Syntax
cd <directory Name>

Description

The cd command changes the current working directory. The user of this
command can specify the absolute path or relative path in the argument. If
the directory specified is not present in the Zilog File System an error is
returned.

Argument(s)

Sample Usage

Example 1

[ZTP EXTF:/]> md zilog
[ZTP EXTF:/]> cd zilog

The above command changes the current working directory to zilog.

Example 2

[ZTP EXTF:/zilog]>
[ZTP EXTF:/zilog]>cd /

The above command changes the current working directory to the root.

Example 3

[ZTP EXTF:/zilog/ZTP]>cd ..

The above command changes the current working directory to the parent
directory (one level up). The current working directory becomes:

directory name Name of the directory.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

110
[ZTP EXTF:/zilog]>
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

111
CLOSE

Syntax
close

Description

The close command is used to terminate a Telnet session. Control is still
in Telnet mode; the connection can be reestablished by calling the open
command.

Argument(s)

None.

Sample Usage

[ZTP EXTF:/]> telnet
eZ80 Telnet% open xxx.xx.x.xx
Welcome to xxx server.
Login:
Password:

Server prompt>>

eZ80 Telnet %close

eZ80 Telnet %
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

112
COPY

Syntax
copy <srcfileName> <destnDirName>

Description

The copy command copies a file from one location to another. The file is
copied to the destination directory with the same name.

Argument(s)

Sample Usage

[ZTP EXTF:/ZILOG]> copy one.txt [ZTP EXTF:/ZILOG/ZTP]>

The above command copies the one.txt file from [ZTP EXTF:/
ZILOG]> to [ZTP EXTF:/ZILOG/ZTP]>.

srcfileName File that must be copied.

destnDirName Destination directory name.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

113
CWD

Syntax
cwd

Description

The cwd command displays the current working directory.

Argument(s)

None.

Sample Usage

[ZTP EXTF:/ZILOG]> cwd

The current working directory is [ZTP EXTF:/ZILOG]>
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

114
DEL

Syntax
del <file Name>

Description

The del command deletes a file if exists.

Argument(s)

Sample Usage

Example 1

[ZTP EXTF:/]> del one.txt

The above command deletes the one.txt file present in the [ZTP
EXTF:/]> directory.

Example 2

[ZTP EXTF:/]> del ZTP EXTF:/ZILOG/ZTP/one.txt

The above command deletes the one.txt file present in the [ZTP
EXTF:/ZILOG/ZTP]> path.

Example 3

[ZTP EXTF:/ZILOG/ZTP]> del ../../one.txt

The above command deletes the one.txt file present in the [ZTP
EXTF:/]> directory.

file name File that must be deleted.

destnDirName Destination directory name.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

115
DELDIR

Syntax
deldir <directory Name>

Description

The deldir command deletes a directory if it exists. If the directory is
empty, only then the specified directory is deleted; otherwise an error is
returned.

Argument(s)

Sample Usage

Example 1

[ZTP EXTF:/ZILOG]> deldir ZTP

The above command deletes the ZTP directory, which is present in the
[ZTP EXTF:/ZILOG]> directory.

Example 2

[ZTP EXTF:/ZILOG]> deldir /ONE

The above command deletes the ONE directory, which is present in the
[ZTP EXTF:/]> (root directory).

Example 3

[ZTP EXTF:/ZILOG/ZTP]> deldir ../ONE

The above command deletes the ONE directory, which is located in the
ZILOG directory.

directory name Name of the directory to be deleted.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

116
DELETEUSR

Syntax
deleteusr username

Description

The deleteusr command deletes an existing FTP user from the FTP
server database.

Argument(s)

None.

Sample Usage

[ZTP EXTF:/]>deleteusr john

The above command deletes the user john.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

117
DELTREE

Syntax
deltree <directory Name>

Description

The deltree command deletes a directory tree. All of the subdirectories
and files, if present, are also deleted.

Argument(s)

Sample Usage

[ZTP EXTF:/ZILOG]> md ONE
[ZTP EXTF:/ZILOG]> md TWO

There are two subdirectories present in the ZILOG directory.

[ZTP EXTF:/]> deltree ZILOG

The above command removes directories ONE and TWO in addition to the
ZILOG directory.

directory name Name of the directory to be deleted.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

118
DEVS

Syntax
devs

Description

The devs shell command prints device information in the device table.
The size of this table is fixed and cannot be adjusted. However, you can
alter the number of devices that the system adds to the table.

Argument(s)

None.

Sample Usage

 [ZTP EXTF:/]>devs

Device Name iVec Minor CtlBlk

TCP 0000 0000 000000

UDP 0000 0000 000000

CONSOLE 0000 0000 000000

SERIAL0 2E0B 0000 00B114

SERIAL1 354C 0000 00B141

TTY 0000 0000 000000

TTY 0000 0000 006F4C

TTY 0000 0001 000000

TTY 0000 0002 000000

TTY 0000 0003 000000

EMAC 385A 0000 00B2C4
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

119
RTC 7B35 0000 000000

HDLC 0000 0000 000000

mSSLm 0000 0000 000000

SSL 0000 0000 003BF1

SSL 0000 0000 004098

SSL 0000 0000 005334

SSL 0000 0000 0057DB

SSL 0000 0000 005C82

FREE

FREE

FREE
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

120
DIR

Syntax
dir < directory Name>

The directory Name argument is optional.

Description

The dir command displays a list of subfolders and files present in a
directory. If the argument is not present, the files and subfolders present in
the current working directory are returned; otherwise the list of files and
subfolders present in the specified directory is returned.

Argument(s)

Sample Usage

[ZTP EXTF:/]>dir
**
DATE TIME TYPE SIZE (bytes) NAME
**

08/23/2004 14:41:02 958 C2.txt
08/23/2004 18:47:08 1001 C6.txt
09/02/2004 16:24:48 <DIR> ZILOG
08/23/2004 18:47:08 <DIR> ONE

 Number of file(s) 2
 Number of Dir(s) 2
**
[ZTP EXTF:/]>

directory name Name of the directory (optional).

Note:
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

121
ECHO

Syntax
echo [text]

Description

The echo shell command is used to echo the text entered after the echo
command to the standard output device associated with the shell process-
ing the command. If the echo command is issued on the console device,
the input string is echoed to the console. If the echo command is issued in
a Telnet session, the input string is echoed to the Telnet session.

Argument(s)

None.

Sample Usage

[ZTP EXTF:/]> echo Zilog
Zilog
[ZTP EXTF:/]>
text Test string to be echoed to the shell’s standard
output device.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

122
EXIT

Syntax
exit

Description

The exit shell command terminates the shell process. If this command is
issued to the shell associated with a Telnet session, the Telnet session is
effectively terminated. If this command is executed on the console, it is
the last input or output operation that is processed by console. After the
console shell is terminated, reboot the system to restart.

Argument(s)

None.

Sample Usage

[ZTP EXTF:/]> exit
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

123
FTP

Syntax
ftp [hostname]

Description

The ftp shell command is the user interface to the Internet-standard File
Transfer Protocol (FTP). The program allows you to transfer files to and
from a remote network site.

The server host with which FTP is to communicate can be specified on
the command line. FTP immediately attempts to establish a connection to
an FTP server on that host; otherwise, FTP enters its command interpreter
and awaits instructions from the user. When FTP is awaiting commands,
the ‘ftp>’ prompt appears in the console. FTP provides a list of sup-
ported commands if the Help command is entered without any argu-
ments. If the Help command is entered with an FTP command name, it
displays a help topic specific to that command.

Table 3 lists the commands recognized by ftp.

Table 3. FTP Commands

FTP Command Description

ascii Set the file transfer type to the network ASCII (default).

bin Set the file transfer type to support binary image transfer.

bye Terminate the FTP session with the remote server and exit
FTP. An end-of-file command also terminates and exits the
session.

cd remote directory Change the working directory on the remote machine to the
remote directory.

close Terminate the FTP session with the remote server and return
to the command interpreter. Any defined macros are erased.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

124
delete remote file Delete the file on the remote machine.

dir [remote directory] Print a listing of the directory contents in the remote directory.
If no directory is specified, the current working directory on
the remote machine is used.

get remote file [local file] Retrieve the remote file and store it on the local machine. If
the local filename is not specified, it retrieves a file containing
the same name as the file on the remote machine. The cur-
rent settings for type, form, mode, and structure are observed
while transferring the file.

hash Toggle hash sign (#) printing for each data block transferred.
The size of a data block is 512 bytes.

help [command] Print an informative message about the meaning of a com-
mand. If no argument is supplied, ftp prints a list of the
known commands.

lcd [directory] Change the working directory on the local machine. If no
directory is specified, the user’s home directory is used.

ls [remote directory] Print a listing of the contents of a directory on the remote
machine. The listing includes any system-dependent informa-
tion that the server chooses to include. For example, most
Unix systems produce output from the ls -l command. (Also
see nlist. If the remote directory remains unspecified, the cur-
rent working directory is used.)

list [remote directory] Synonym for ls.

mkdir directory name Create a directory on the remote machine.

nlist [remote directory] Print a list of the files in a directory on the remote machine. If
remote directory remains unspecified, the current working
directory is used.

Table 3. FTP Commands (Continued)

FTP Command Description
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

125
put local file [remote file] Store a local file on the remote machine. If remote file remains
unspecified, the local file name is used to name the remote
file. file transfer uses the current settings for type, format,
mode, and structure.

pwd Print the name of the current working directory on the remote
machine.

quit A synonym for bye.

recv remote file [local file] A synonym for get.

rename [from] [to] On the remote machine, rename the [from] file to [to] file.

rmdir directory name Delete a directory on the remote machine.

system Show the type of operating system running on the remote
machine.

Table 3. FTP Commands (Continued)

FTP Command Description
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

126
GETTIME

Syntax

gettime

Description

The gettime command retrieves the current time from the Real-Time
Clock using the RTC driver.

Argument(s)

None.

Sample Usage

If the gettime command is entered in the ZTP shell, the current time is
displayed in the following format:

[ZTP EXTF:/]> gettime
Sun , 25 Mar 2007 10:25:20
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

127
HANG

Syntax
hang

Description

The hang shell command intentionally hangs the system. As a result of
executing this command, maskable interrupts are disabled and the proces-
sor spins in a tight loop. Unless the Watchdog Timer is activated to pro-
cess a nonmaskable interrupt (NMI), the only way to recover is to reboot
the system.

Argument(s)

None.

Sample Usage

[ZTP EXTF:/]>hang
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

128
HELP

Syntax
help

Description

The help shell command displays the set of commands that can be exe-
cuted from the shell’s command prompt. Multiple instances of the shell
can be active at the same time, but each instance shares the same com-
mand set.

Argument(s)

None.

Sample Usage

Commands are:

? SNTPClient addusr arp
bpool cd copy cwd
del deldir deleteusr deltree
devs dir echo exit
ftp gettime hang help
ifstat igmp kill mail
md mem move netstat
ping port pppmode pppopt
pppstart pppstat pppstop ps
reboot ren rendir sem
setipparams settime sleep telnet
tftp_get tftp_put type vol
[ZTP EXTF:/]>
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

129
IFSTAT

Syntax
ifstat

Description

The ifstat shell command prints network interface information for all
of the available interfaces. The following display provides an example of
the Ifstat command.

Argument(s)

None.

Sample Usage

[ZTP EXTF:/]>ifstat

IP address Def Gtway State Type H/W address
172.16.6.212 172.16.6.1 UP Ethernet 0:90:23:0:3:3
192.168.2.12 192.168.2.1 DOWN PPP -

RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

130
IGMP

Syntax
igmp interface {join | leave} group

Description

The igmp shell command adds or removes a specified IP multicast
address from the list of addresses a host is using. This information can
also be conveyed to the IGMP layer using the hgjoin and hgleave
APIs. The IGMP protocol ensures that IP multicast routers in the same
subnet as the host forward IP multicast frames for all group addresses to
any node that the router domain is using. Therefore, when group member-
ship is no longer required, the IGMP hgleave API should be issued to
avoid unnecessary multicasting.

Argument(s)

Sample Usage

[ZTP EXTF:/]>igmp 0 join 227.21.4.3
[ZTP EXTF:/]>
[ZTP EXTF:/]>igmp 0 leave 227.21.4.3
[ZTP EXTF:/]>

interface The interface number of the primary Ethernet interface
(for single Ethernet interface it should be 0).

join | leave If the string join is provided as the first argument,
membership is added. If the string leave is specified,
group membership is terminated.

group The IP multicast address of the group.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

131
KILL

Syntax
kill process

Description

The kill shell command kills a specified process. This shell command
performs the same function as the kill process manipulation API.

Argument(s)

Sample Usage

[ZTP EXTF:/]>kill B8F036

process The ASCII decimal integer representation of the pro-
cess ID to be killed.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

132
MAIL

Syntax
mail

Description

The mail shell command is used to interactively compose an email mes-
sage that is sent to an SMTP server for delivery to a specified recipient.
This shell command performs the same operation as the mail API.

Argument(s)

None.

Sample Usage

[ZTP EXTF:/]>mail
Press <ESC> then <Enter> to exit early
Enter the name or IP of the SMTP Server: 172.16.6.99
Enter the port number to connect to (normally 25): 25
Enter the user name (only if using CRAM-MD5
authentication else press ESC):satish
Enter the password (only if using CRAM-MD5
authentication else press ESC):satish
Enter the email Subject: Test mail
Enter the recipient's email address: test@zilog.com
Enter the sender's email address: eZ80@zilog.com
Enter the body of the email (Press ESC/Enter to
complete):
This is a test mail
Please wait while the message is processed.
Mail message was successfully sent.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

133
MD

Syntax
md <directory Name>

Description

The md command creates a directory. If the argument contains only the
name of the directory, then it is created in the current working directory.
The directory name along with the path can also be specified if the direc-
tory must be created in a different location.

Argument(s)

Sample Usage

Example 1

[ZTP EXTF:/]> md zilog

The above command creates a zilog directory in the [ZTP EXTF:/]>
directory.

Example 2

[ZTP EXTF:/]> md EXTF:/zilog/ZTP

The above command creates a ZTP directory in the [ZTP EXTF:/
zilog]> directory.

directory name Name of the directory to be created.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

134
MEM

Syntax
mem

Description

The mem shell command prints a summary of the state of system memory.
It prints an address of the region, the state, and the minimum allocatable
size for the specified region.

Argument(s)

None.

Sample Usage

 [ZTP EXTF:/]>mem

Region State Unit Size

B9099B PRIO 16

B909C6 –

B909F1 –

B90A1C –

B90A47 –

B90A72 –

B90A9D –

B90AC8 –

B90AF3 –

B909B1E –

B90B49 –

B90B74 –
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

135
B90B9F –

B90BCA –

B90BF5 –

B90C20 –

B90C4B –

B90C76 –

B90CA1 –

B90CCC –

 [ZTP EXTF:/]>

RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

136
MOVE

Syntax
move <srcfileName> <destnDirName>

Description

The move command moves a file from one location to another. The file is
moved to the destination directory with the same name.

Argument(s)

Sample Usage
[ZTP EXTF:/ZILOG]> move one.txt EXTF:/ZILOG/ZTP

The above command moves the one.txt file from the
[ZTP EXTF:/ZILOG]> directory to the [ZTP EXTF:/ZILOG/ZTP]>
directory.

srcfileName File that must be moved.

destnDirName Name of the destination directory.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

137
OPEN

Syntax
open <name or ipaddress of the remote system>

Description

The open command is used to start a Telnet session with a specified IP
address. This command establishes a TCP connection with a server on
port 23.

When a connection is established with the server, and after login, the
server returns a prompt to the client. The client then begins executing
commands on the server as if it were using the server’s terminal.

This command can be executed only after executing the telnet command
with no arguments.

Argument(s)

Sample Usage

[ZTP EXTF:/]> telnet
eZ80 Telnet% open xxx.xx.x.xx

name or ipaddress of
the remote system

Name or IP address of the remote system
to be opened.

Note:
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

138
PING

Syntax
ping host [count [size [delay]]]

Description

The ping shell command sends ICMP echo request packets to a specified
host and reports statistics upon successful replies.

Argument(s)

Sample Usage
ZTP EXTF:/]>
[ZTP EXTF:/]>ping 172.16.6.1
ZTP2.3.0(C) Zilog Inc. [ping utility]
PING#1, Reply from 172.16.6.1 :rtt < 50 ms
PING#2, Reply from 172.16.6.1 :rtt < 50 ms
PING#3, Reply from 172.16.6.1 :rtt < 50 ms
Ping Stats:
Sent:3
Recvd:3
Success:100%
Avg RTT(Approx):0.00 sec
[ZTP EXTF:/]>

host The IP address of the target system.

count An optional number of packets to send. If this parameter is
not specified, 10 packets are sent.

size If the count parameter is specified, then the size in bytes of
each ping packet can also be specified. If this parameter is not
specified, each ping packet contains 56 bytes of data.

delay If the size parameter is specified, then the delay (in seconds)
between each ping request can also be specified.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

139
PORT

Syntax
port

Description

The port shell command formats and prints information about all mes-
sage ports currently in use. There are twenty message ports available for
use in the system (port IDs between 0 and 19). The state of active ports is
3 (see ports.h in the includes directory).

• state indicates the state of the message queue.

• length indicates the length of the message queue.

• MaxMsgSize indicates the maximum size of the message queue.

• MsgSpaceLeft indicates the amount of messages that the queue can
accept.

• Blocked Threads indicates the number of threads blocked on the
message queue.

• start indicates the start location of the message queue.

Argument(s)

None.

Sample Usage

 [ZTP EXTF:/]>port
port state length MaxMsgSizeMsgSpaceLeftBlockedThreadsstart

B8FF37 PRIO 4 3 4 1 CAF2
B8FF68 –
B8FF99 –
B8FFCA –
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

140
B8FFFB –
B9002C –
B9005D –
B9008E –
B900BF –
B900F0 –
B90121 –
B90152 –
B90183 –
B901B4 –
B901E5 –
B90216 –
B90247 –
B90278 –
B902A9 –
B902DA –
 [ZTP EXTF:/]>

RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

141
PPPSTART

Syntax
pppstart

Description

Starts the PPP connection. Depending on the configuration of the
ppp_conf.c file, PPP starts as a DCC client, a DCC server, a dial-up cli-
ent, or a dial-up server. For more information about PPP configuration,
see the description of the ppp_conf.c file in the Configuring PPP sec-
tion on page 7.

Argument(s)

None.

Sample Usage

Sample Usage
[ZTP EXTF:/]> pppstart
Configuring PPP ...
PPP Started
[ZTP EXTF:/]>
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

142
PPPSTOP

Syntax
pppstop

Description

The pppstop shell command forces the PPP layer to disconnect from the
remote peer. If the PPP layer is not connected when this command is
issued, there is no effect. If the do_auto_reconnect flag is set to TRUE
in the PPP structure, the PPP layer automatically attempts to reestablish
the disconnected link. Therefore, if it is required that the PPP connection
not be immediately reestablished after disconnecting, the
do_auto_reconnect flag should be set to FALSE before calling the
pppstop command. This command performs the same function as the
ppp_stop API.

Argument(s)

None.

Sample Usage

[ZTP EXTF:/]>pppstop
PPP Stop
Sending LCP_Terminate_Request...
[ZTP EXTF:/]>
PPP DEAD
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

143
PS

Syntax
ps

Description

The ps shell command displays information about all processes in the
system that are created but not yet killed. The PID identifies each process
and is used as an input parameter on the various process manipulation
functions.

Index–It displays an index of the ps table.

Name–It displays the name provided to the process when it is created.

pid–It indicates the process ID/handle of the process in the system.

State–It indicates the scheduling state of each process. All processes not
marked as ready or curr are blocked on a given resource or are sus-
pended.

Mode–It indicates the mode of the created process.

quantum–It indicates the round-robin timeslice value of the thread.

Priority–It indicates the scheduling priority assigned when the process
is created.

Argument(s)

None.

Sample Usage

[ZTP EXTF:/]>ps
Index Name pid state quantum priority
0 IDLE B84ACF ready 1 31
1 SYSIT B84B4E InfSus 20 0
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

144
2 SER0IT B84BCD InfSus 2 6
3 EMACIT B84C4C InfSus 2 6
4 http_rqst B84CCB InfSus 1 9
5 SYSD B84D4A FinBlock 1 20
6 DHCPtmr B84DC9 Infblock 1 10
7 - B84E48
8 FTPD B84EC7 InfSus 1 28
9 TLNTD B84F46 InfSus 1 10
10 SNMPD B84FC5 InfSus 1 20
11 SHL B85044 Running 1 24
12 - B850C3
13 - B85142
14 - B851C1
15 - B85240
16 - B852BF
17 - B8533E
[ZTP EXTF:/]>
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

145
QUIT

Syntax
quit

Description

The quit command is used to terminate the Telnet session. Control is
completely relinquished from Telnet. The telnet command must be
used to reestablish the connection.

The quit command can be executed only in the Telnet command mode.

Argument(s)

None.

Sample Usage

[ZTP EXTF:/]> telnet
eZ80 Telnet% open xxx.xx.x.xx
Welcome to xxx server.
Login:
Password:

Server prompt>>

eZ80 Telnet %quit

[ZTP EXTF:/]>

Note:
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

146
REBOOT

Syntax
reboot

Description

The reboot shell command causes the operating system to begin its ini-
tialization sequence. This command is not the same as the reboot com-
mand used as a hardware reset. For details, refer to the eZ80 product
specification appropriate to your target processor.

Argument(s)

None.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

147
REN

Syntax
ren <fileName1> <fileName2>

Description

The ren command renames a file.

Argument(s)

Sample Usage
[ZTP EXTF:/ZILOG]> ren one.txt newfile.txt

fileName1 Original filename

fileName2 New name
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

148
RENDIR

Syntax
rendir <dirName1> <dirName2>

Description

The rendir command renames a directory.

Argument(s)

Sample Usage
[ZTP EXTF:/ZILOG]> rendir TCPIP ZTP

dirName1 Original directory name.

dirName2 New directory name.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

149
SEM

Syntax
sem

Description

The sem shell command displays information about all active sema-
phores. There is a finite number of semaphores in the system defined by
MAX_SEMAPHORESH in the ZSysgen.h header file. Each row in the dis-
play shows the semaphore control block address, its state, its current
semaphore count, its dynamic count, and the number of threads blocked
on this semaphore.

Argument(s)

None.

Sample Usage
[ZTP EXTF:/]>sem
sem state InitCount DynamicCount NumThreads
B864F5 PRIO 1 1 0
B8651B PRIO 1 1 0
B86541 PRIO 1 1 0
B86567 PRIO 1 1 0
B8658D PRIO 1 1 0
B865B3 PRIO 1 1 0
B865D9 PRIO 1 1 0
B865FF PRIO 1 1 0
B86625 PRIO 1 1 0
B8664B PRIO 1 1 0
B86671 PRIO 1 1 0
B86697 PRIO 1 1 0
B86755 -
B8677B -
B867A1 -
[ZTP EXTF:/]>
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

150
SETTIME

Syntax

settime <year> <month> <dayofmonth> <dayofweek> <hrs>
<mins> <secs>

Description

The settime command writes the current time into the RTC registers
using the RTC driver. After the time is set, RTC increments the time every
second. After it is set initially, the correct system time is displayed, even
if the eZ80 hardware is rebooted.

Argument(s)

Sample Usage

If the gettime command is entered in the ZTP shell, the current time is
displayed in the following format:

[ZTP EXTF:/]> settime 2007 03 25 07 10 25 20
[ZTP EXTF:/]> gettime
Sun , 25 Mar 2007 10:25:20

year Value of year.

month Value of month (starting with Jan as 01 to Dec as 12).

dayofmonth Value of the day of month.

dayofweek Value of the day of the week (starting with Mon as 01 to
Sun as 07).

hrs Value of the hours in 24 hrs standard.

mins Value of minutes.

secs Value of seconds.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

151
SLEEP

Syntax

sleep <seconds>

Description

The sleep command causes the shell to sleep for a specified number of
seconds.

Argument(s)

Sample Usage
sleep <number of seconds to sleep>

Example

sleep 20

seconds The amount of time to sleep, in seconds.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

152
TELNET

Syntax
telnet <name or ipaddress of the remote system>

Description

The telnet command is used to start a Telnet session with a specified
name or IP address of the remote system. This command establishes a
TCP connection with a server on port 23.

When a connection is established with the server, and after login, the
server returns a prompt to the client. The client then begins executing
commands on the server as if it were using the server’s terminal.

If an argument is not present, the shell reverts to Telnet mode and you must
send the open command to establish the connection.

Argument(s)
name or ipaddress of the remote system

Sample Usage

Example 1

[ZTP EXTF:/]> telnet 172.16.6.xx

Example 2

[ZTP EXTF:/]> telnet
eZ80 Telnet% open xxx.xx.x.xx

Note:
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

153
TFTP_GET

Syntax
tftp_get host filename

Description

The tftp_get shell command is used to download a file from a TFTP
server in which host is the IP address (dotted notation) of the TFTP
server and filename is the name of the file to be downloaded from the
server. The file is downloaded to the shell’s current working directory
(CWD). If the file name in the shell’s CWD is same as the one that is
downloaded from server, then the original file is overwritten with the new
file name.

Argument(s)

Sample Usage

[ZTP EXTF:/]>tftp_get 172.16.6.42 testfile.txt
Getting file : testfile.txt
.....................
file transfer Successful
[ZTP EXTF:/]>

host IP address of the TFTP server.

filename Name of the file to be retrieved from the TFTP server.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

154
TFTP_PUT

Syntax
tftp_put host filename

Description

The tftp_put shell command is used to upload a file to the TFTP server
in which host is the IP address (dotted notation) of the TFTP server and
filename is the name of the file to be uploaded to the server. The file to
be uploaded should be present in the shell’s current working directory
(CWD).

Argument(s)

Sample Usage

[ZTP EXTF:/]>
[ZTP EXTF:/]>tftp_put 172.16.6.42 testfile.txt
Uploading file : testfile.txt

......................
file transfer Successful
[ZTP EXTF:/]>

host IP address of the TFTP server.

filename Name of the file to be uploaded to the TFTP server.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

155
TYPE

Syntax
type <filename>

Description

The type command displays the contents of the specified file.

Argument(s)

Sample Usage

[ZTP EXTF:/]>type RM.txt

Zilog’s TCP/IP solution, ZTP, is an integrated,
preemptive multitasking OS and TCP/IP protocol
software suite that has been optimized for embedded
systems.
ZTP works in conjunction with the award-winning
eZ80Acclaim! family of Flash microcontrollers to
provide standard network connectivity in a wide range
of applications, such as industrial control,
automation, facility management, IP appliances, and
remote systems communication.

filename Name of the file.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

156
VOL

Syntax
vol

Description

The vol command displays details about the volume like the space left in
the volume, the space already used, total space available in the volume
and the dirty space. This command returns the details about all of the vol-
umes present in the system.

Argument(s)

None.

Sample Usage

[ZTP EXTF:/]>vol

**
Volume Name Total Space Free Space Used Space Dirty Space

(bytes) (bytes) (bytes) (bytes)
**
EXTF 917504 219648 174080 523776

**
[ZTP EXTF:/]>
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

157
SNTPCLIENT

Syntax
SNTPClient

Description

The SNTPClient command retrieves the current time from SNTP server
by sending a Time request using the SNTPClient protocol.

Argument(s)

Sample Usage
[ZTP EXTF:/]> SNTPClient 193.1.250.3

Fri, 12th Jan 2006, 14:03:57

ServerIPAddress IP Address of the SNTP Time server.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

158
NETSTAT

Syntax
netstat

Description

netstat is a diagnostic command that displays protocol statistics and
TCP/UDP network connections.

Argument(s)

None.

Sample Usage

Each column heading in the following code is described below.

FD. Socket Descriptor, returned by the socket() API.

[ZTP EXTF:/]>netstat

FD Type Oport State SrcPort DstPort SrcIP DstIP
0 TCP 80 LISTEN 0 0 0.0.0.0 0.0.0.0
1 TCP 0 LISTEN 80 0 0.0.0.0 0.0.0.0
2 TCP 23 LISTEN 0 0 0.0.0.0 0.0.0.0
3 TCP 21 LISTEN 0 0 0.0.0.0 0.0.0.0
4 TCP 0 ESTB 21 4794 172.16.6.184 172.16.6.177
5 TCP 0 ESTB 23 4796 172.16.6.184 172.16.6.177
6 UDP 161
7 TCP 0 LISTEN 21 0 0.0.0.0 0.0.0.0
8 TCP 0 LISTEN 23 0 0.0.0.0 0.0.0.0
9 NA
10 NA
11 NA
12 NA
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

159
Type. Indicates whether the socket is a TCP or an UDP socket.

Oport. This is the port Number on which the Master socket is listening.

State. This is applicable to TCP Sockets, which indicates the TCP Con-
nection states. The possible states are:

SrcPort. Port Number of the local system.

DstPort. Indicates the Port Number of the remote System. In cases where
the connection is not yet established, the port number is shown as zero.

ScrIP. IP Address of the local system.

DstIP. IP Address of the remote system.

LISTEN Socket in Listen state.

SYNSENT SYN is sent.

SYNREC Received SYN.

ESTB Established connection with the remote system.

FINWT1 Sent FIN.

FINWT2 Sent FIN, received FINACK.

CLOSEWT Received FIN, send ACK.

CLOSING Sent FIN, received FIN (waiting for FINACK).

LASTACK FIN received, sent FINACK and also FIN.

TIMEWT Wait state after sending final FINACK.

CLOSE Connection is closed.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

160
SETIPPARAMS

Syntax
setipparams <DHCP [e]nable/[d]isable> <emac addr> <IP
addr> <GateWay> <Net Mask>

Description

The setipparams command stores DHCP state, EMAC address, IP
address, Gateway address, and Network mask in the nonvolatile memory.
This command stores the data permanently. Therefore, the network
parameters can be retained across the reboots. The setipparams works
only if Init_DataPersistence() is called in ZTPInit_Conf.c file
main() function.

Argument(s)

Sample Usage

<DHCP [e]nable/[d]isable> Specifies whether DHCP should be
enabled or disabled.

e – enables DHCP.
d – disables DHCP.

<emac addr> The MAC of the module.

If DHCP fails, the following parameters are considered to be the default
by the module.

<IP addr> IP address.

<GateWay> Gateway address.

<Net Mask> Network mask.

[ZTP:/]> setipparams d 00:90:23:00:01:01 192.168.1.50
192.168.1.1 255.255.255.0
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

161
SCAN

Syntax
scan <[SSID]>

Description

The scan command searches the BSS (Access Points) available in the
range.

Argument(s)

Sample Usage
[ZTP:/]> scan

or

scan XYZ

SSID Specific Service Set Identifier (SSID) of the Access Point (AP);
it is an optional parameter. If the SSID is not determined in scan,
it searches all of the available APs; otherwise it searches only
the specified SSID.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

162
JOIN

Syntax
join <SSID> <[WEP Key]>

Description

The join command connects to the BSS (AP) of the specified SSID.

Argument(s)

Sample Usage

SSID The Service Set Identifier (SSID) of the Access Point (AP).

WEP
Key

It is 10 or 26 hexadecimal characters. The WEP Key lengths for
different encryption modes are:

Encryption WEP Key length

None Not applicable.

WEP40 10 hexadecimal characters.

WEP104 26 hexadecimal characters.

[ZTP:/]> join XXX – No Encryption.

join YYY 6B2DECA79E: For WEP40, 10 characters WEP
Key.

join ZZZ 6B2DECA79E0D85E5DDBC9F4ECF: For
WEP104, 26-character WEP Key.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

163
CONFIGWLAN

Syntax
configwlan <SSID> <pass-phrase> <encType>

Description

The configwlan command stores the specified Service Set Identifier
(SSID) and WEP Key in the internal Flash information page. It uses a
pass phrase to generate the key. This command works only for WLAN
demo FLASH and COPY_TO_RAM configurations. This command
stores the data permanently. Therefore, the WLAN configuration parame-
ters can be retained across the reboots.

This command will take a long time to complete. While the PSK (Pre-
Shared Key) is generated, a period will be displayed on the console
approximately every 2-3 seconds.

Argument(s)

SSID The Service Set Identifier (SSID) of the Access Point
(AP).

pass-phrase The pass-phrase to generate the key.
For WEP-40, four keys are generated with the key
index 0 to 3.
For WEP-104 and WPA/WPA2, one key is generated
with a key index 0.

encType Indicates the type of encryption.

0: No encryption.

1: 64-bit WEP encryption.

Note:
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

164
Sample Usage

2: 128-bit WEP encryption.

3: WPA/WPA2.

[ZTP:/]> configwlan AAA 00 0 For no encryption.

configwlan BBB abcde 1 For WEP40.

configwlan CCC zilog 2 For WEP104.

configwlan DDD zilog 3 For WPA/WPA2.
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

165
KEYINDEX

Syntax
keyIndex <Key ID> <[WEP Key]>

Description

The keyIndex command is used to change the key index. Some APs can
support more than one WEP key at a time, and this security feature can be
used by the station if it allows changing the key at run time.This com-
mand is not available in the RAM configuration.

If the WEP key is provided as the second argument, the key is added/mod-
ified in the data persistence; else, the key set using the configwlan com-
mand will be considered for further data transfers.

Argument(s)

Sample Usage

Key ID Key index 0–3.

WEP Key The WEP Key lengths for different encryption modes are
10 or 26 hexadecimal characters.

[ZTP:/]> keyIndex 0 A WEP key of 0 is set for further commu-
nication.

Note:
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

166
PASS-PHRASE

Syntax
pass-phrase <SSID> <pass-phrase>

Description

The pass-phrase command is used to change or generate the PSK (Pre-
Shared Key) for WPA and WPA2 in the RAM configuration. For
COPY_TO_RAM and FLASH configurations, see the configwlan API
definition on page 163.

This command will take a long time to complete. While the PSK is gener-
ated, a period will be displayed on the console approximately every 2–3
seconds.

Argument(s)

Sample Usage

SSID The Service Set Identifier (SSID) of the Access Point
(AP).

pass-phrase A set of ASCII characters used to generate the PSK.

[ZTP:/]> pass-phrase XYZ abcdefghijkl PSK is generated
for SSID XYZ
and pass phrase
‘abcdefghijkl’.

Note:
RM00411401-1211 ZTP Shell Command Reference

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

167
Appendix A. Creating ZTP Shell
Commands

This appendix provides shows how to create your own shell command,
using the PING command as an example.

ping Command Example

To ping a system from the eZ80 Development Platform, ZTP provides an
example x_ping() function. This function sends a specified number of
ping requests to a specified host, and displays the resulting statistics.

A prototype of the x_ping() function is:

INT16 x_ping (struct shvars * Shl,
 RZK_DEVICE_CB_t * stdin,
 RZK_DEVICE_CB_t * stdout,
 RZK_DEVICE_CB_t * stderr,
 UINT16 nargs,
 INT8 * args[])

In the above code, Shl is a pointer to the shvars structure defined for the
shell, and therefore represents the shell. You must declare a variable for
the shvars structure and pass the address of this variable as a parameter
to the x_ping() function.

stdin, stdout and stderr are integer values that specify the device to
which the data is to be written. nargs is the number of arguments to the
command, and args is an array string containing the command and its
arguments.
RM00411401-1211 Creating ZTP Shell Commands

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

168
Sample Usage

INT16 MyFunction(void)
{
 struct shvars Shl;
 RZK_DEVICE_CB_t * TTYDevID; // Keep command and its
 //argument in an array of strings
 INT8* pingargs[] = {"ping", "172.16.6.48", "5"};

 devSerial = (struct devCap *) malloc (sizeof(struct
 devCap));
 devSerial->devHdl = (VOID *)CONSOLE;
 devSerial->devType = 0;

 if((TTYDevID = RZKDevOpen("TTYM",(RZK_DEV_MODE_t*)
 devSerial)) == (RZK_DEVICE_CB_t *)SYSERR)
 {
 printf("Can't open tty for SERIAL0\n");
 return SYSERR;
 }
 // TTYDevID is an integer value specifying the
 // device.
 x_ping(&Shl, TTYDevID, TTYDevID, TTYDevID,3,
pingargs);
}

RM00411401-1211 Creating ZTP Shell Commands

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

169
Appendix B. Guidelines to Porting
SNMP and PPP Applications

SNMP and PPP protocols are modified in ZTP v2.2.0 in terms of configu-
ration and APIs. This section explains the differences between ZTP v2.1.0
(and earlier) and ZTP v2.2.0 and later releases. This section provides
details about porting the ZTP v2.1.0 applications to ZTP v2.2.0 and later
releases.

For more information about the SNMP APIs, SNMP functions, PPP APIs,
and PPP functions, refer to the Zilog TCP/IP Stack API Reference Man-
ual (RM0040).

PPP and SNMP protocols are part of CommoprotoLib.lib, therefore
the project settings need not be changed.

API Changes

Table 4 lists the API changes between ZTP versions.

Table 4. API Changes

Module

APIs

ZTP v2.1.0 ZTP v2.2.0 and Later Versions

SNMP void
snmp_init(SN_TRAP_NOTIFY
snTrapNotifyFunc)

INT16
ztpSnmpV1Init(
ZTPSNMP_TRAP_NOTIFY
snTrapNotifyFunc)

void
snmpv2_init(SN_TRAP_NOTIFY
snTrapNotifyFunc)

INT16
ztpSnmpV2Init(
ZTPSNMP_TRAP_NOTIFY
snTrapNotifyFunc)
RM00411401-1211 Guidelines to Porting SNMP and PPP

http://www.zilog.com/docs/software/rm0040.pdf
http://www.zilog.com/docs/software/rm0040.pdf

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

170
SNMP
(cont’d.)

void
snmpv3_init(SN_TRAP_NOTIFY
snTrapNotifyFunc)

INT16
ztpSnmpV3Init(
ZTPSNMP_TRAP_NOTIFY
snTrapNotifyFunc)

INT16
TrapGen
(
 UINT8 Type,
 UINT32 Code,
 UINT16 NumObjects,
 SN_Object_s *pObjList
)

INT16
snmpGenerateTrap
(
 INT8 *userName,
 UINT8 *pMgrAddress,
 UINT8 Type,
 UINT32 Code,
 UINT16 NumObjects,
 SNMPObj *pObjList
)

PPP void
ppp_init(INT8 * serdev)

INT16 ztpPPPInit(void)

void
ppp_stop(void)

INT16 ztpPPPStop(void)

Table 4. API Changes (Continued)

Module

APIs

ZTP v2.1.0 ZTP v2.2.0 and Later Versions
RM00411401-1211 API Changes

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

171
Table 5 lists the changes to the configuration files in terms of data struc-
tures and variable names.

Table 5. Data Structure Changes

Module

Data Structures Header
File(.h)
References (if
any)

Exposed .c
File RemarksZTP v2.1.0 ZTP v2.2.0

SNMP struct
mib_info

SNMPMIBData Located in
snmpmib.h
file at
..\ZTP\Inc

snmib.c Functionality
wise,
SNMPMIBData
remains the
same as
struct
mib_info, but
SNMPMIBData
is an optimized
version of
mib_info.

struct
SN_Descr_s

SNMPDisplayStr Located in
snmpv1.h file
at
..\ZTP\Inc

snmp_conf.
c

struct
SNMP_TABLE
_S

SNMP_TABLE_S Located in
snmpmib.h at
..\ZTP\Inc

snmib.c

struct
SN_Object_
s

SNMPObjLs snmpv1.h snmib.c

snmp_conf.c snmp_conf.c snmp_conf.
c

all of the
variable names
are changed
RM00411401-1211 API Changes

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

172
Index

A
About This Manual viii
add_cgi function 44
Adding Objects to the MIB 84
Address Resolution Protocol 4
Address Resolution Protocol, Reverse 4
ARP 4

B
BOOTP, How to Use 64
Build Options 31
Building Web Pages 50

C
CD 109
CGI code 44
CGI function 41, 43
CGI Functions 46
CGI functions 51
CGI routine 50
Closing a Connection to a Remote Host 59
configure the client browser, limitation of
ZTP HTTPS 72
Configuring Text Telephony 28
Configuring the Network 28
configwlan 163
Connecting to a Remote Host Across a Net-
work 58
Connecting to an FTP Server 62
copy 112
Counter 81

Crystal CS8900A 1

D
Defining the HTTP Header 39
Defining the HTTP Method 37
Defining the Website Structure 40
del 114
deldir 115
deltree 117
DHCP 1, 4
DHCP, How to Use 64
dir 120
DisplayString 80
DNS 1, 4, 66
DNS IP address 66
DNS, How to Use 66
DNS-formatted message 66
Domain Name Server 4
Dynamic Host Configuration Protocol 4
Dynamic web pages 43

F
File Transfer Protocol 4
FTP 1, 4
FTP Client, How to Use 62
FTP Server, How to Use 61

G
Gauge 81
gettime 126
RM00411401-1211 Index

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

173
H
How to Add a Table to the MIB 89
How to Use BOOTP 64
How to Use DHCP 64
How to Use DNS 66
How to Use HTTP 36
How to Use IGMP 67
How to Use SMTP 54
How to Use SNMP 77
How to Use TELNET 57
How to Use TFTP 53
How to Use the HTTPS Server 71
How to Use the Serial Ports 74
How to Use the Shell 74
How to Use the Telnet Client 57
How to Use TIMEP 68
HTTP 1, 4
HTTP applications 46
HTTP method 39
HTTP response 50
HTTP, How to Use 36
http_defheaders 39
http_defmethods 37, 38, 39
http_init function 37, 39, 40
http_request 50
http_request structure 39
https_init API 71
HyperText Transfer Protocol 4

I
ICMP 1, 4
IGMP 1, 4
Initializing HTTP 36
Intended Audience viii

Internet Control Message Protocol 4
Internet Group Management Protocol 4
Internet Protocol 4
IP 1, 4
IP address 54, 55, 66
IP address, DNS 66
IpAddress 81
Issuing FTP Commands 63

K
keyIndex 165

L
Limitations, HTTPS server 72
Login With A Username and Password 63

M
Manual Objectives viii
md 133
mimetype 41, 43
move 136

O
Object Names 78
Object Types 79
Online Information x
Organization ix
OS Plane 2

P
pass-phrase 166
PhysAddress 81
Point-to-Point Protocol 4
port 443, secure HTTPS server 72
RM00411401-1211 Index

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

174
port 80, non-secure HTTP server 72
PPP 1, 4
pppstart 141

R
RARP 1, 4
Related Documents ix
ren 147
rendir 148
Requesting the Time 68
Reverse Address Resolution Protocol 4
RZK Zilog Real Time operating system
viii

S
Safeguards x
Secure Socket Layer Protocol 4
Sending Data to a Remote Host 60
settime 150
Simple Mail Transfer Protocol 4
Simple Network Management Protocol 4
sleep 151
SMTP 1, 4
SMTP port 55
SMTP server 55
SMTP, How to Use 54
SNMP Objects 81
SSL 1, 4
Stack Plane 2
Static web pages 42
SysContact 29
SysDescr 29
SysLocation 30
SysName 29

SysObjectID 29
SysServices 30
System Features 1

T
TCP/IP protocol stack 64
TCP/IP software libraries viii
TCP/IP stack 36
TCP/IP stack protocol 46
TELNET 1, 4
TFTP 1, 4
TFTP server 53
TFTP, How to Use 53
The Fourth parameter 41
The path parameter 41
The port Parameter 46
The SNMP_GET_FUNC Support Routine
92
The SNMP_NEXT_FUNC Support Rou-
tine 96
The SNMP_SET_FUNC Support Routine
94
The type parameter 41
Time Protocol 4
TIMEP 1, 4
TIMEP, How to Use 68
TimeTicks 81
Trademarks x
Transmission Control Protocol 4
Trap Generation 99
type 155

U
UDP 1, 4
RM00411401-1211 Index

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

175
UDP connection 53
UDP datagram 66
Updating SNMP Values 98
User Datagram Protocol 4
u_short snmp_max_object_size 30
Using SNMP to Manipulate Leaf Objects
in the MIB 87
Using ZTP 36

V
VOL 156

W
warning messages, limitations of ZTP
HTTPS 73
web client 36
Working with Tables 88

Z
Zilog TCP/IP Software Suite viii, 1
ZTP Software 2
RM00411401-1211 Index

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

176
RM00411401-1211 Index

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

177
RM00411401-1211 Index

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

178
RM00411401-1211 Index

Zilog TCP/IP Software Suite Programmer’s Guide
Reference Manual

RM00411401-1211 Customer Support

179

Customer Support

To share comments, get your technical questions answered, or report
issues you may be experiencing with our products, please visit Zilog’s
Technical Support page at http://support.zilog.com.

To learn more about this product, find additional documentation, or to dis-
cover other facets about Zilog product offerings, please visit the Zilog
Knowledge Base at http://zilog.com/kb or consider participating in the
Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine
whether a later edition exists, please visit the Zilog website at http://
www.zilog.com.

http://support.zilog.com
http://zilog.com/kb
http://zilog.com/forum
http://www.zilog.com
http://www.zilog.com

	Zilog TCP/IP Software Suite Programmer’s Guide
	Revision History
	Table of Contents
	Introduction
	About This Manual
	Intended Audience
	Manual Organization
	Software Release Versions
	Safeguards
	Online Information

	Product Overview
	System Features
	ZTP Software

	ZTP Configuration
	Network-Configurable Parameters
	Datalink Layer Configuration
	Configuring PPP
	User Configuration Details
	Network Configuration

	Build Options for the ZDS II Environment
	Libraries

	Using ZTP
	How to Use HTTP
	Initializing HTTP
	Building Web Pages

	How to Use TFTP
	How to Use SMTP
	How to Use the Telnet Server
	How to Use the Telnet Client
	Connecting to a Remote Host Across a Network
	Closing a Connection to a Remote Host
	Sending Data to a Remote Host

	How to Use the FTP Server
	How to Use the FTP Client
	Connecting to an FTP Server
	Log In With a Username and Password
	Issuing FTP Commands

	How to Use BOOTP
	How to Use DHCP
	How to Use DNS
	How to Use IGMP
	How to Use TIMEP
	Requesting the Time

	How to Use PPP
	How to Use the HTTPS Server
	How to Use the Shell
	How to Use SNMP
	Working with SNMPv3

	How to Use the SNTP Client

	ZTP Shell Command Reference
	addusr
	arp
	bpool
	cd
	close
	copy
	cwd
	del
	deldir
	deleteusr
	deltree
	devs
	dir
	echo
	exit
	ftp
	gettime
	hang
	help
	ifstat
	igmp
	kill
	mail
	md
	mem
	move
	open
	ping
	port
	pppstart
	pppstop
	ps
	quit
	reboot
	ren
	rendir
	sem
	settime
	sleep
	telnet
	tftp_get
	tftp_put
	type
	vol
	SNTPClient
	netstat
	setipparams
	scan
	join
	configwlan
	keyIndex
	pass-phrase

	Appendix A. Creating ZTP Shell Commands
	ping Command Example

	Appendix B. Guidelines to Porting SNMP and PPP Applications
	API Changes

	Index
	Customer Support

